在封闭冷域的弯角结构中结合熵生成进行传热评估

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-03-22 DOI:10.1002/htj.23044
Jiaul Haque Saboj, Preetom Nag, Goutam Saha, Suvash C. Saha
{"title":"在封闭冷域的弯角结构中结合熵生成进行传热评估","authors":"Jiaul Haque Saboj,&nbsp;Preetom Nag,&nbsp;Goutam Saha,&nbsp;Suvash C. Saha","doi":"10.1002/htj.23044","DOIUrl":null,"url":null,"abstract":"<p>In cold climates or winter countries, maintaining optimal room temperatures is essential for comfort and energy efficiency. Conventional square or rectangle-shaped rooms often face challenges in achieving efficient heat transfer (HT) and uniform temperature distribution. To address these limitations, this study has been explored using curved corner cavities, varying their aspect ratio (<i>AR</i> = 1.0 and 0.5), and incorporating a circular shape cooler to enhance HT within the room. The curved corners promote better airflow circulation, creating a more efficient HT environment. The dimensionless governing equations and corresponding boundary conditions are solved numerically using the finite element method. This research aims to assess the optimized HT and entropy production within a curved corner cavity, varying their AR and enclosing a circular shape cooler to determine the most effective configuration for maximizing HT and energy efficiency in winter conditions. This study reveals that in the case without a cooler (WOC), the average Nusselt number (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>u</mi>\n \n <mrow>\n <mspace></mspace>\n \n <mi>a</mi>\n \n <mi>v</mi>\n \n <mi>g</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> $N{u}_{avg}$</annotation>\n </semantics></math>) is higher in the curved rectangle cavity compared with the curved square cavity for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>R</mi>\n \n <mi>a</mi>\n </mrow>\n </mrow>\n <annotation> $Ra$</annotation>\n </semantics></math> values. Using the curved square (<i>AR</i> = 1.0), <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>u</mi>\n \n <mrow>\n <mi>a</mi>\n \n <mi>v</mi>\n \n <mi>g</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> $N{u}_{avg}$</annotation>\n </semantics></math> increases by 191.86%, while with the curved rectangle (<i>AR</i> = 0.5), <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>u</mi>\n \n <mrow>\n <mi>a</mi>\n \n <mi>v</mi>\n \n <mi>g</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> $N{u}_{avg}$</annotation>\n </semantics></math> increases by 302.63% at <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>R</mi>\n \n <mi>a</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mn>6</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> $Ra=1{0}^{6}$</annotation>\n </semantics></math>. Additionally, in the case with a cooler (WC), <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>u</mi>\n \n <mrow>\n <mspace></mspace>\n \n <mi>a</mi>\n \n <mi>v</mi>\n \n <mi>g</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> $N{u}_{avg}$</annotation>\n </semantics></math> is higher than the case WOC and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>u</mi>\n \n <mrow>\n <mspace></mspace>\n \n <mi>a</mi>\n \n <mi>v</mi>\n \n <mi>g</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> $N{u}_{avg}$</annotation>\n </semantics></math>, and an average total entropy <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mi>E</mi>\n \n <msub>\n <mi>n</mi>\n \n <mrow>\n <mspace></mspace>\n \n <mi>a</mi>\n \n <mi>v</mi>\n \n <mi>g</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(E{n}_{avg})$</annotation>\n </semantics></math> increases for both the WOC and WC cases for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>R</mi>\n \n <mi>a</mi>\n </mrow>\n </mrow>\n <annotation> $Ra$</annotation>\n </semantics></math> values. Transitioning from a square to a curved rectangle (<i>AR</i> = 0.5) WC, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>u</mi>\n \n <mrow>\n <mspace></mspace>\n \n <mi>a</mi>\n \n <mi>v</mi>\n \n <mi>g</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> $N{u}_{avg}$</annotation>\n </semantics></math> increases by 329.34% at <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>R</mi>\n \n <mi>a</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n \n <msup>\n <mn>0</mn>\n \n <mn>6</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> $Ra=1{0}^{6}$</annotation>\n </semantics></math>. Furthermore, in the WOC case, the curved square cavity and, in the WC case, the curved rectangle show better energy efficiency and reduce environmental impact.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/htj.23044","citationCount":"0","resultStr":"{\"title\":\"Heat transfer assessment incorporated with entropy generation within a curved corner structure enclosing a cold domain\",\"authors\":\"Jiaul Haque Saboj,&nbsp;Preetom Nag,&nbsp;Goutam Saha,&nbsp;Suvash C. Saha\",\"doi\":\"10.1002/htj.23044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In cold climates or winter countries, maintaining optimal room temperatures is essential for comfort and energy efficiency. Conventional square or rectangle-shaped rooms often face challenges in achieving efficient heat transfer (HT) and uniform temperature distribution. To address these limitations, this study has been explored using curved corner cavities, varying their aspect ratio (<i>AR</i> = 1.0 and 0.5), and incorporating a circular shape cooler to enhance HT within the room. The curved corners promote better airflow circulation, creating a more efficient HT environment. The dimensionless governing equations and corresponding boundary conditions are solved numerically using the finite element method. This research aims to assess the optimized HT and entropy production within a curved corner cavity, varying their AR and enclosing a circular shape cooler to determine the most effective configuration for maximizing HT and energy efficiency in winter conditions. This study reveals that in the case without a cooler (WOC), the average Nusselt number (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>u</mi>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mi>a</mi>\\n \\n <mi>v</mi>\\n \\n <mi>g</mi>\\n <mspace></mspace>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> $N{u}_{avg}$</annotation>\\n </semantics></math>) is higher in the curved rectangle cavity compared with the curved square cavity for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>R</mi>\\n \\n <mi>a</mi>\\n </mrow>\\n </mrow>\\n <annotation> $Ra$</annotation>\\n </semantics></math> values. Using the curved square (<i>AR</i> = 1.0), <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>u</mi>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mi>v</mi>\\n \\n <mi>g</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> $N{u}_{avg}$</annotation>\\n </semantics></math> increases by 191.86%, while with the curved rectangle (<i>AR</i> = 0.5), <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>u</mi>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mi>v</mi>\\n \\n <mi>g</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> $N{u}_{avg}$</annotation>\\n </semantics></math> increases by 302.63% at <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>R</mi>\\n \\n <mi>a</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n \\n <msup>\\n <mn>0</mn>\\n \\n <mn>6</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> $Ra=1{0}^{6}$</annotation>\\n </semantics></math>. Additionally, in the case with a cooler (WC), <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>u</mi>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mi>a</mi>\\n \\n <mi>v</mi>\\n \\n <mi>g</mi>\\n <mspace></mspace>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> $N{u}_{avg}$</annotation>\\n </semantics></math> is higher than the case WOC and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>u</mi>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mi>a</mi>\\n \\n <mi>v</mi>\\n \\n <mi>g</mi>\\n <mspace></mspace>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> $N{u}_{avg}$</annotation>\\n </semantics></math>, and an average total entropy <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>E</mi>\\n \\n <msub>\\n <mi>n</mi>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mi>a</mi>\\n \\n <mi>v</mi>\\n \\n <mi>g</mi>\\n <mspace></mspace>\\n </mrow>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(E{n}_{avg})$</annotation>\\n </semantics></math> increases for both the WOC and WC cases for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>R</mi>\\n \\n <mi>a</mi>\\n </mrow>\\n </mrow>\\n <annotation> $Ra$</annotation>\\n </semantics></math> values. Transitioning from a square to a curved rectangle (<i>AR</i> = 0.5) WC, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>u</mi>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mi>a</mi>\\n \\n <mi>v</mi>\\n \\n <mi>g</mi>\\n <mspace></mspace>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> $N{u}_{avg}$</annotation>\\n </semantics></math> increases by 329.34% at <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>R</mi>\\n \\n <mi>a</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n \\n <msup>\\n <mn>0</mn>\\n \\n <mn>6</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> $Ra=1{0}^{6}$</annotation>\\n </semantics></math>. Furthermore, in the WOC case, the curved square cavity and, in the WC case, the curved rectangle show better energy efficiency and reduce environmental impact.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/htj.23044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在寒冷气候或冬季国家,保持最佳室温对于提高舒适度和能效至关重要。传统的正方形或长方形房间在实现高效传热(HT)和均匀温度分布方面往往面临挑战。为了解决这些局限性,本研究探索使用弧形角腔,改变其长宽比(AR = 1.0 和 0.5),并结合圆形冷却器来增强室内的热传导。弧形拐角能促进气流循环,创造更高效的高温环境。采用有限元法对无量纲控制方程和相应的边界条件进行了数值求解。本研究旨在评估弧形拐角空腔内的最佳热效率和熵产生,改变其 AR 值并包围圆形冷却器,以确定在冬季条件下最大化热效率和能效的最有效配置。研究表明,在没有冷却器(WOC)的情况下,在所有数值上,矩形曲面空腔的平均努塞尔特数()都高于正方形曲面空腔。使用弧形正方形(AR = 1.0)时,平均努内特数()增加了 191.86%,而使用弧形矩形(AR = 0.5)时,平均努内特数()增加了 302.63%。此外,在使用冷却器(WC)的情况下,熵值高于 WOC 和 WC 情况下的熵值,并且 WOC 和 WC 情况下的平均总熵在所有值上都有所增加。从正方形过渡到弧形矩形(AR = 0.5)时,WC 的熵增加了 329.34%。此外,在 WOC 情况下,弧形正方形空腔和在 WC 情况下,弧形矩形空腔显示出更高的能效并减少了对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat transfer assessment incorporated with entropy generation within a curved corner structure enclosing a cold domain

In cold climates or winter countries, maintaining optimal room temperatures is essential for comfort and energy efficiency. Conventional square or rectangle-shaped rooms often face challenges in achieving efficient heat transfer (HT) and uniform temperature distribution. To address these limitations, this study has been explored using curved corner cavities, varying their aspect ratio (AR = 1.0 and 0.5), and incorporating a circular shape cooler to enhance HT within the room. The curved corners promote better airflow circulation, creating a more efficient HT environment. The dimensionless governing equations and corresponding boundary conditions are solved numerically using the finite element method. This research aims to assess the optimized HT and entropy production within a curved corner cavity, varying their AR and enclosing a circular shape cooler to determine the most effective configuration for maximizing HT and energy efficiency in winter conditions. This study reveals that in the case without a cooler (WOC), the average Nusselt number ( N u a v g $N{u}_{avg}$ ) is higher in the curved rectangle cavity compared with the curved square cavity for all R a $Ra$ values. Using the curved square (AR = 1.0), N u a v g $N{u}_{avg}$ increases by 191.86%, while with the curved rectangle (AR = 0.5), N u a v g $N{u}_{avg}$ increases by 302.63% at R a = 1 0 6 $Ra=1{0}^{6}$ . Additionally, in the case with a cooler (WC), N u a v g $N{u}_{avg}$ is higher than the case WOC and N u a v g $N{u}_{avg}$ , and an average total entropy ( E n a v g ) $(E{n}_{avg})$ increases for both the WOC and WC cases for all R a $Ra$ values. Transitioning from a square to a curved rectangle (AR = 0.5) WC, N u a v g $N{u}_{avg}$ increases by 329.34% at R a = 1 0 6 $Ra=1{0}^{6}$ . Furthermore, in the WOC case, the curved square cavity and, in the WC case, the curved rectangle show better energy efficiency and reduce environmental impact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Characteristics of thermo‐hydraulic flow inside corrugated channels: Comprehensive and comparative review Unsteady flow past an impulsively started infinite vertical plate in presence of thermal stratification and chemical reaction A comparison between Hankel and Fourier methods for photothermal radiometry analysis Recent advancements in flow control using plasma actuators and plasma vortex generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1