{"title":"应用于分类问题的模糊卷积神经网络模型","authors":"Claudia I. Gonzalez, Cesar Torres","doi":"10.3233/jifs-219369","DOIUrl":null,"url":null,"abstract":"This paper presents an approach incorporating fuzzy logic techniques inside a convolutional neural network to manage uncertainty present in the multiple data sources that the model handles when training. The implementation considers the use of information and filters in the fuzzy spectrum, as well as the creation of a new layer to replace the traditional convolution layer with a fuzzy convolutional layer. The aim is to design artificial intelligence algorithms that combine the potential of deep convolutional neural networks and fuzzy logic to create robust systems that allow modeling the uncertainty present in the sources of data and that are applied to classification problems. The fuzzification process is developed using three membership functions, including the Triangular, Gaussian, and S functions. The work was tested in databases oriented to traffic signs, due to the complexity of the different circumstances and factors in which a traffic sign can be found.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy convolutional neural network model applied to classification problems\",\"authors\":\"Claudia I. Gonzalez, Cesar Torres\",\"doi\":\"10.3233/jifs-219369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach incorporating fuzzy logic techniques inside a convolutional neural network to manage uncertainty present in the multiple data sources that the model handles when training. The implementation considers the use of information and filters in the fuzzy spectrum, as well as the creation of a new layer to replace the traditional convolution layer with a fuzzy convolutional layer. The aim is to design artificial intelligence algorithms that combine the potential of deep convolutional neural networks and fuzzy logic to create robust systems that allow modeling the uncertainty present in the sources of data and that are applied to classification problems. The fuzzification process is developed using three membership functions, including the Triangular, Gaussian, and S functions. The work was tested in databases oriented to traffic signs, due to the complexity of the different circumstances and factors in which a traffic sign can be found.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-219369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-219369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种将模糊逻辑技术融入卷积神经网络的方法,以管理模型在训练时处理的多种数据源中存在的不确定性。实施过程中考虑了模糊频谱中信息和滤波器的使用,以及创建一个新层,用模糊卷积层取代传统卷积层。其目的是设计人工智能算法,结合深度卷积神经网络和模糊逻辑的潜力,创建稳健的系统,以模拟数据源中存在的不确定性,并应用于分类问题。模糊化过程使用了三种成员函数,包括三角函数、高斯函数和 S 函数。由于发现交通标志的不同环境和因素的复杂性,这项工作在面向交通标志的数据库中进行了测试。
Fuzzy convolutional neural network model applied to classification problems
This paper presents an approach incorporating fuzzy logic techniques inside a convolutional neural network to manage uncertainty present in the multiple data sources that the model handles when training. The implementation considers the use of information and filters in the fuzzy spectrum, as well as the creation of a new layer to replace the traditional convolution layer with a fuzzy convolutional layer. The aim is to design artificial intelligence algorithms that combine the potential of deep convolutional neural networks and fuzzy logic to create robust systems that allow modeling the uncertainty present in the sources of data and that are applied to classification problems. The fuzzification process is developed using three membership functions, including the Triangular, Gaussian, and S functions. The work was tested in databases oriented to traffic signs, due to the complexity of the different circumstances and factors in which a traffic sign can be found.