{"title":"集成法布里-珀罗腔体:技术的飞跃","authors":"Philippe Velha","doi":"10.3390/encyclopedia4020039","DOIUrl":null,"url":null,"abstract":"Integrated Fabry–Perot cavities (IFPCs), often referred to as nanobeams due to their form factor and size, have profoundly modified the landscape of integrated photonics as a new building block for classical and quantum engineering. In this entry, the main properties of IFPCs will be summarized from the classical and quantum point of view. The classical will provide some of the main results obtained in the last decade, whereas the quantum point of view will explore cavity quantum electrodynamics (CQED), which promises to revolutionize the future “quantum internet”.","PeriodicalId":504869,"journal":{"name":"Encyclopedia","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Fabry–Perot Cavities: A Quantum Leap in Technology\",\"authors\":\"Philippe Velha\",\"doi\":\"10.3390/encyclopedia4020039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated Fabry–Perot cavities (IFPCs), often referred to as nanobeams due to their form factor and size, have profoundly modified the landscape of integrated photonics as a new building block for classical and quantum engineering. In this entry, the main properties of IFPCs will be summarized from the classical and quantum point of view. The classical will provide some of the main results obtained in the last decade, whereas the quantum point of view will explore cavity quantum electrodynamics (CQED), which promises to revolutionize the future “quantum internet”.\",\"PeriodicalId\":504869,\"journal\":{\"name\":\"Encyclopedia\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/encyclopedia4020039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/encyclopedia4020039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated Fabry–Perot Cavities: A Quantum Leap in Technology
Integrated Fabry–Perot cavities (IFPCs), often referred to as nanobeams due to their form factor and size, have profoundly modified the landscape of integrated photonics as a new building block for classical and quantum engineering. In this entry, the main properties of IFPCs will be summarized from the classical and quantum point of view. The classical will provide some of the main results obtained in the last decade, whereas the quantum point of view will explore cavity quantum electrodynamics (CQED), which promises to revolutionize the future “quantum internet”.