Khadija Rafique, Zafar Mahmood, Adnan, Umar Khan, Taseer Muhammad, Magda Abd El-Rahman, Sanaa A Bajri, H. A. Khalifa
{"title":"非轴对称混合纳米流体流向拉伸表面时焦耳热熵生成的数值研究","authors":"Khadija Rafique, Zafar Mahmood, Adnan, Umar Khan, Taseer Muhammad, Magda Abd El-Rahman, Sanaa A Bajri, H. A. Khalifa","doi":"10.1093/jcde/qwae029","DOIUrl":null,"url":null,"abstract":"\n The industrial sector has shown a growing interest in hybrid nanofluids affected by magnetohydrodynamics (MHD) owing to their wide range of applications, including photovoltaic water heaters and scraped surface heat exchangers. The main purpose of this study is to look at how entropy is created in a hybrid nanofluid of $A{l}_2{O}_3 - Cu$ mixed with ${H}_2O$ at a non-axisymmetric stagnation point flow with joule heating and viscous dissipation. By using appropriate non-similarity transformations, the PDEs governing the boundary layer region of this issue are transformed into a set of nonlinear PDEs. The BVP4c MATLAB program, which uses local non-similarity and additional truncation, may fix the problem. The velocity profiles in both directions grow when the values of ${\\phi }_2,\\ M,\\lambda $ and A parameters increase. The temperature profile rises as the values of A and $Ec$ grow and lowers as ${\\phi }_2$ and M increase. The obtained numerical findings demonstrate significant impacts on both the heat transfer rate and fluid flow parameters of the hybrid nanofluid. When the concentration of nanoparticles and the magnetic parameter are heightened, there is an enhancement seen in the skin friction coefficient and decline in heat transfer rate. In addition, the entropy production profile shows an increasing tendency as a function of the parameters ${\\phi }_2,\\ M,$ and $Br,$ while demonstrating a decreasing tendency of function of the parameter $\\alpha $. The Bejan number profile has a positive correlation with the parameter $\\alpha $ but shows a negative correlation with the variables ${\\phi }_2,\\ M,$ and $Br$.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Entropy Generation of Joule Heating in Non-Axisymmetric Flow of Hybrid Nanofluid Towards Stretching Surface\",\"authors\":\"Khadija Rafique, Zafar Mahmood, Adnan, Umar Khan, Taseer Muhammad, Magda Abd El-Rahman, Sanaa A Bajri, H. A. Khalifa\",\"doi\":\"10.1093/jcde/qwae029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The industrial sector has shown a growing interest in hybrid nanofluids affected by magnetohydrodynamics (MHD) owing to their wide range of applications, including photovoltaic water heaters and scraped surface heat exchangers. The main purpose of this study is to look at how entropy is created in a hybrid nanofluid of $A{l}_2{O}_3 - Cu$ mixed with ${H}_2O$ at a non-axisymmetric stagnation point flow with joule heating and viscous dissipation. By using appropriate non-similarity transformations, the PDEs governing the boundary layer region of this issue are transformed into a set of nonlinear PDEs. The BVP4c MATLAB program, which uses local non-similarity and additional truncation, may fix the problem. The velocity profiles in both directions grow when the values of ${\\\\phi }_2,\\\\ M,\\\\lambda $ and A parameters increase. The temperature profile rises as the values of A and $Ec$ grow and lowers as ${\\\\phi }_2$ and M increase. The obtained numerical findings demonstrate significant impacts on both the heat transfer rate and fluid flow parameters of the hybrid nanofluid. When the concentration of nanoparticles and the magnetic parameter are heightened, there is an enhancement seen in the skin friction coefficient and decline in heat transfer rate. In addition, the entropy production profile shows an increasing tendency as a function of the parameters ${\\\\phi }_2,\\\\ M,$ and $Br,$ while demonstrating a decreasing tendency of function of the parameter $\\\\alpha $. The Bejan number profile has a positive correlation with the parameter $\\\\alpha $ but shows a negative correlation with the variables ${\\\\phi }_2,\\\\ M,$ and $Br$.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwae029\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Numerical Investigation of Entropy Generation of Joule Heating in Non-Axisymmetric Flow of Hybrid Nanofluid Towards Stretching Surface
The industrial sector has shown a growing interest in hybrid nanofluids affected by magnetohydrodynamics (MHD) owing to their wide range of applications, including photovoltaic water heaters and scraped surface heat exchangers. The main purpose of this study is to look at how entropy is created in a hybrid nanofluid of $A{l}_2{O}_3 - Cu$ mixed with ${H}_2O$ at a non-axisymmetric stagnation point flow with joule heating and viscous dissipation. By using appropriate non-similarity transformations, the PDEs governing the boundary layer region of this issue are transformed into a set of nonlinear PDEs. The BVP4c MATLAB program, which uses local non-similarity and additional truncation, may fix the problem. The velocity profiles in both directions grow when the values of ${\phi }_2,\ M,\lambda $ and A parameters increase. The temperature profile rises as the values of A and $Ec$ grow and lowers as ${\phi }_2$ and M increase. The obtained numerical findings demonstrate significant impacts on both the heat transfer rate and fluid flow parameters of the hybrid nanofluid. When the concentration of nanoparticles and the magnetic parameter are heightened, there is an enhancement seen in the skin friction coefficient and decline in heat transfer rate. In addition, the entropy production profile shows an increasing tendency as a function of the parameters ${\phi }_2,\ M,$ and $Br,$ while demonstrating a decreasing tendency of function of the parameter $\alpha $. The Bejan number profile has a positive correlation with the parameter $\alpha $ but shows a negative correlation with the variables ${\phi }_2,\ M,$ and $Br$.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.