{"title":"用等离子电解氧化 AZ31 镁合金形成的 CeO2 粒子修饰的 MgAl 氧化物涂层:光致发光和光催化性能","authors":"S. Stojadinović, N. Radić","doi":"10.3390/met14030366","DOIUrl":null,"url":null,"abstract":"MgAl oxide coatings composed of MgO and MgAl2O4 phases were doped with CeO2 particles via plasma electrolytic oxidation (PEO) of AZ31 magnesium alloy in a 5 g/L NaAlO2 water solution. Subsequently, particles of CeO2 up to 8 g/L were added. Extensive investigations were conducted to examine the morphology, the chemical and phase compositions, and, most importantly, the photoluminescent (PL) properties and photocatalytic activity (PA) during the photodegradation of methyl orange. The number of CeO2 particles incorporated into MgAl oxide coatings depends on the concentration of CeO2 particles in the aluminate electrolyte. However, the CeO2 particles do not significantly affect the thickness, phase structure, or surface morphology of the coatings. The PL emission spectrum of MgAl oxide coatings is divided into two bands: one in the 350–600 nm range related to structural defects in MgO, and another much more intense band in the 600–775 nm range attributed to the F+ centres in MgAl2O4. The incorporated CeO2 particles do not have a significant effect on the PL intensity of the band in the red spectral region, but the PL intensity of the first band increases with the concentration of CeO2 particles. The PA of MgAl/CeO2 oxide coatings is higher than that of pure MgAl oxide coatings. The MgAl/CeO2 oxide coating developed in aluminate electrolyte with a concentration of 2 g/L CeO2 particles exhibited the highest PA. The MgAl/CeO2 oxide coatings remained chemically and physically stable across multiple cycles, indicating their potential for applications.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"33 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MgAl Oxide Coatings Modified with CeO2 Particles Formed by Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy: Photoluminescent and Photocatalytic Properties\",\"authors\":\"S. Stojadinović, N. Radić\",\"doi\":\"10.3390/met14030366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MgAl oxide coatings composed of MgO and MgAl2O4 phases were doped with CeO2 particles via plasma electrolytic oxidation (PEO) of AZ31 magnesium alloy in a 5 g/L NaAlO2 water solution. Subsequently, particles of CeO2 up to 8 g/L were added. Extensive investigations were conducted to examine the morphology, the chemical and phase compositions, and, most importantly, the photoluminescent (PL) properties and photocatalytic activity (PA) during the photodegradation of methyl orange. The number of CeO2 particles incorporated into MgAl oxide coatings depends on the concentration of CeO2 particles in the aluminate electrolyte. However, the CeO2 particles do not significantly affect the thickness, phase structure, or surface morphology of the coatings. The PL emission spectrum of MgAl oxide coatings is divided into two bands: one in the 350–600 nm range related to structural defects in MgO, and another much more intense band in the 600–775 nm range attributed to the F+ centres in MgAl2O4. The incorporated CeO2 particles do not have a significant effect on the PL intensity of the band in the red spectral region, but the PL intensity of the first band increases with the concentration of CeO2 particles. The PA of MgAl/CeO2 oxide coatings is higher than that of pure MgAl oxide coatings. The MgAl/CeO2 oxide coating developed in aluminate electrolyte with a concentration of 2 g/L CeO2 particles exhibited the highest PA. The MgAl/CeO2 oxide coatings remained chemically and physically stable across multiple cycles, indicating their potential for applications.\",\"PeriodicalId\":510812,\"journal\":{\"name\":\"Metals\",\"volume\":\"33 2‐3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/met14030366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14030366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MgAl Oxide Coatings Modified with CeO2 Particles Formed by Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy: Photoluminescent and Photocatalytic Properties
MgAl oxide coatings composed of MgO and MgAl2O4 phases were doped with CeO2 particles via plasma electrolytic oxidation (PEO) of AZ31 magnesium alloy in a 5 g/L NaAlO2 water solution. Subsequently, particles of CeO2 up to 8 g/L were added. Extensive investigations were conducted to examine the morphology, the chemical and phase compositions, and, most importantly, the photoluminescent (PL) properties and photocatalytic activity (PA) during the photodegradation of methyl orange. The number of CeO2 particles incorporated into MgAl oxide coatings depends on the concentration of CeO2 particles in the aluminate electrolyte. However, the CeO2 particles do not significantly affect the thickness, phase structure, or surface morphology of the coatings. The PL emission spectrum of MgAl oxide coatings is divided into two bands: one in the 350–600 nm range related to structural defects in MgO, and another much more intense band in the 600–775 nm range attributed to the F+ centres in MgAl2O4. The incorporated CeO2 particles do not have a significant effect on the PL intensity of the band in the red spectral region, but the PL intensity of the first band increases with the concentration of CeO2 particles. The PA of MgAl/CeO2 oxide coatings is higher than that of pure MgAl oxide coatings. The MgAl/CeO2 oxide coating developed in aluminate electrolyte with a concentration of 2 g/L CeO2 particles exhibited the highest PA. The MgAl/CeO2 oxide coatings remained chemically and physically stable across multiple cycles, indicating their potential for applications.