膨润土作为一种低成本吸附剂去除电镀工业多组分水体系中重金属离子的潜力

Melisa Ahmetović, I. Šestan, A. Odobašić, Edisa Papraćanin, H. Keran, Abdel Đozić, Halid Junuzović
{"title":"膨润土作为一种低成本吸附剂去除电镀工业多组分水体系中重金属离子的潜力","authors":"Melisa Ahmetović, I. Šestan, A. Odobašić, Edisa Papraćanin, H. Keran, Abdel Đozić, Halid Junuzović","doi":"10.9734/irjpac/2024/v25i2848","DOIUrl":null,"url":null,"abstract":"Waste water in the galvanic process contains high concentrations of heavy metals that pose a direct danger to humans and the environment. Conventional methods for their removal are quite expensive and generate a large amount of waste. The development of new and improvement of existing methods for the removal of heavy metals from galvanic wastewater are the subject of many studies.\nCompared to other purification methods, the adsorption is becoming an increasingly popular method of wastewater purification, especially if the adsorbent is cheap, easily available and does not require any other treatment before use. Therefore, the aim of the work was to investigate the possibility of using natural bentonite for the removal of heavy metal ions from multi-component water systems of the galvanic industry.\nFor this purpose, the physico-chemical characterization of natural bentonite was performed, and then the influence of pH value, time and temperature on the adsorption efficiency was examined.\nThe results of adsorption showed that natural bentonite can be used as an adsorbent for the removal of heavy metal ions from waste galvanic waters, and that at pH 5 it achieves the maximum removal efficiency for Cu(II):Cr(III):Ni(II) ions in the percentage ratio 100 : 99.990 : 99.998. The results showed that the highest removal efficiency for Cu (II) ions was achieved in the first 10 minutes, and 20 minutes for Cr (III) and Ni (II) ions. The maximum efficiency of Cu (II) removal was achieved at all temperatures, while for Cr (III) 99.99% and Ni (II) 100% maximum efficiency was achieved at 35°C, which indicates that the adsorption process is endothermic.\nThe experimental results of the adsorption of Cu (II) metal ions are in good agreement with the Langmuir and Freundlich theoretical models, while for Cr (III) and Ni (II) ions they are in better agreement with the Langmuir adsorption model.","PeriodicalId":14371,"journal":{"name":"International Research Journal of Pure and Applied Chemistry","volume":"65 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Potential of Bentonite as a Low-cost Adsorbent for the Removal of Heavy Metal Ions from Multicomponent Aqueous Systems of the Galvanic Industry\",\"authors\":\"Melisa Ahmetović, I. Šestan, A. Odobašić, Edisa Papraćanin, H. Keran, Abdel Đozić, Halid Junuzović\",\"doi\":\"10.9734/irjpac/2024/v25i2848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waste water in the galvanic process contains high concentrations of heavy metals that pose a direct danger to humans and the environment. Conventional methods for their removal are quite expensive and generate a large amount of waste. The development of new and improvement of existing methods for the removal of heavy metals from galvanic wastewater are the subject of many studies.\\nCompared to other purification methods, the adsorption is becoming an increasingly popular method of wastewater purification, especially if the adsorbent is cheap, easily available and does not require any other treatment before use. Therefore, the aim of the work was to investigate the possibility of using natural bentonite for the removal of heavy metal ions from multi-component water systems of the galvanic industry.\\nFor this purpose, the physico-chemical characterization of natural bentonite was performed, and then the influence of pH value, time and temperature on the adsorption efficiency was examined.\\nThe results of adsorption showed that natural bentonite can be used as an adsorbent for the removal of heavy metal ions from waste galvanic waters, and that at pH 5 it achieves the maximum removal efficiency for Cu(II):Cr(III):Ni(II) ions in the percentage ratio 100 : 99.990 : 99.998. The results showed that the highest removal efficiency for Cu (II) ions was achieved in the first 10 minutes, and 20 minutes for Cr (III) and Ni (II) ions. The maximum efficiency of Cu (II) removal was achieved at all temperatures, while for Cr (III) 99.99% and Ni (II) 100% maximum efficiency was achieved at 35°C, which indicates that the adsorption process is endothermic.\\nThe experimental results of the adsorption of Cu (II) metal ions are in good agreement with the Langmuir and Freundlich theoretical models, while for Cr (III) and Ni (II) ions they are in better agreement with the Langmuir adsorption model.\",\"PeriodicalId\":14371,\"journal\":{\"name\":\"International Research Journal of Pure and Applied Chemistry\",\"volume\":\"65 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Pure and Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/irjpac/2024/v25i2848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Pure and Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/irjpac/2024/v25i2848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电镀过程中产生的废水含有高浓度的重金属,对人类和环境造成直接危害。传统的去除重金属的方法非常昂贵,而且会产生大量废物。与其他净化方法相比,吸附法正日益成为一种流行的废水净化方法,尤其是当吸附剂便宜、容易获得且在使用前不需要任何其他处理时。因此,这项工作的目的是研究使用天然膨润土去除电镀工业多组分水系统中重金属离子的可能性。为此,对天然膨润土进行了物理化学表征,然后研究了 pH 值、时间和温度对吸附效率的影响。吸附结果表明,天然膨润土可用作去除废电解水中重金属离子的吸附剂,在 pH 值为 5 时,天然膨润土对 Cu(II):Cr(III):Ni(II) 离子的去除率最高,比例为 100 : 99.990 : 99.998。结果表明,前 10 分钟对 Cu (II) 离子的去除率最高,20 分钟对 Cr (III) 和 Ni (II) 离子的去除率最高。Cu (II) 金属离子的吸附实验结果与 Langmuir 和 Freundlich 理论模型十分吻合,而 Cr (III) 和 Ni (II) 离子的吸附实验结果与 Langmuir 吸附模型更为吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Potential of Bentonite as a Low-cost Adsorbent for the Removal of Heavy Metal Ions from Multicomponent Aqueous Systems of the Galvanic Industry
Waste water in the galvanic process contains high concentrations of heavy metals that pose a direct danger to humans and the environment. Conventional methods for their removal are quite expensive and generate a large amount of waste. The development of new and improvement of existing methods for the removal of heavy metals from galvanic wastewater are the subject of many studies. Compared to other purification methods, the adsorption is becoming an increasingly popular method of wastewater purification, especially if the adsorbent is cheap, easily available and does not require any other treatment before use. Therefore, the aim of the work was to investigate the possibility of using natural bentonite for the removal of heavy metal ions from multi-component water systems of the galvanic industry. For this purpose, the physico-chemical characterization of natural bentonite was performed, and then the influence of pH value, time and temperature on the adsorption efficiency was examined. The results of adsorption showed that natural bentonite can be used as an adsorbent for the removal of heavy metal ions from waste galvanic waters, and that at pH 5 it achieves the maximum removal efficiency for Cu(II):Cr(III):Ni(II) ions in the percentage ratio 100 : 99.990 : 99.998. The results showed that the highest removal efficiency for Cu (II) ions was achieved in the first 10 minutes, and 20 minutes for Cr (III) and Ni (II) ions. The maximum efficiency of Cu (II) removal was achieved at all temperatures, while for Cr (III) 99.99% and Ni (II) 100% maximum efficiency was achieved at 35°C, which indicates that the adsorption process is endothermic. The experimental results of the adsorption of Cu (II) metal ions are in good agreement with the Langmuir and Freundlich theoretical models, while for Cr (III) and Ni (II) ions they are in better agreement with the Langmuir adsorption model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetics and Equilibrium Studies of the Detoxification of Aqueous Solutions of Phenolic Derivatives using Activated Carbon Anti-Diabetic Activities of the Extracts from Euphorbia hirta L. (Euphorbiaceae) Specie found in Burkina Faso Using α-Glucosidase Inhibitor Syntheses and X-ray Structure of N-(Benzothiazol-2-yl)-3-chlorobenzamide Copper Adsorption by a Clay from Central Ivory Coast: Analysis by Differential Pulse Anodic Stripping Voltammetry Isolation and Characterization of Glucocorticoid Steriod from the Leaf of Rauvolfia vomitoria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1