基于深度学习算法的景观图像识别与分析

Nong Limei, Dongfan Wu, Zhang Bo
{"title":"基于深度学习算法的景观图像识别与分析","authors":"Nong Limei, Dongfan Wu, Zhang Bo","doi":"10.3233/jifs-239654","DOIUrl":null,"url":null,"abstract":"Garden landscape is the combination of nature and humanity, with high aesthetic value, ecological value and cultural value, has become an important part of people’s life. Modern people have a higher pursuit for the spiritual food such as garden landscape after the material life is satisfied, which brings new challenges to the construction of urban garden landscape. As an advanced type of machine learning, deep learning applied to landscape image recognition can solve the problem of low quality and low efficiency of manual recognition. Based on this, this paper proposes a garden landscape image recognition algorithm based on SSD (Single Shot Multibox Detector), which realizes accurate extraction and recognition of image features by positioning the target, and can effectively improve the quality and efficiency of landscape image recognition. In order to test the feasibility of the algorithm proposed in this paper, experimental analysis was carried out in the CVPR 2023 landscape data set. The experimental results show that the algorithm has a high recognition accuracy for landscape images, and has excellent performance compared with traditional image recognition algorithms.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape image recognition and analysis based on deep learning algorithm\",\"authors\":\"Nong Limei, Dongfan Wu, Zhang Bo\",\"doi\":\"10.3233/jifs-239654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Garden landscape is the combination of nature and humanity, with high aesthetic value, ecological value and cultural value, has become an important part of people’s life. Modern people have a higher pursuit for the spiritual food such as garden landscape after the material life is satisfied, which brings new challenges to the construction of urban garden landscape. As an advanced type of machine learning, deep learning applied to landscape image recognition can solve the problem of low quality and low efficiency of manual recognition. Based on this, this paper proposes a garden landscape image recognition algorithm based on SSD (Single Shot Multibox Detector), which realizes accurate extraction and recognition of image features by positioning the target, and can effectively improve the quality and efficiency of landscape image recognition. In order to test the feasibility of the algorithm proposed in this paper, experimental analysis was carried out in the CVPR 2023 landscape data set. The experimental results show that the algorithm has a high recognition accuracy for landscape images, and has excellent performance compared with traditional image recognition algorithms.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-239654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-239654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

园林景观是自然与人文的结合,具有极高的审美价值、生态价值和文化价值,已成为人们生活的重要组成部分。现代人在物质生活得到满足后,对园林景观等精神食粮有了更高的追求,这给城市园林景观建设带来了新的挑战。作为机器学习的一种高级类型,深度学习应用于园林景观图像识别可以解决人工识别质量低、效率低的问题。基于此,本文提出了一种基于SSD(Single Shot Multibox Detector)的园林景观图像识别算法,通过定位目标实现图像特征的精确提取和识别,能有效提高园林景观图像识别的质量和效率。为了检验本文所提算法的可行性,在 CVPR 2023 景观数据集中进行了实验分析。实验结果表明,该算法对景观图像具有较高的识别准确率,与传统图像识别算法相比性能优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Landscape image recognition and analysis based on deep learning algorithm
Garden landscape is the combination of nature and humanity, with high aesthetic value, ecological value and cultural value, has become an important part of people’s life. Modern people have a higher pursuit for the spiritual food such as garden landscape after the material life is satisfied, which brings new challenges to the construction of urban garden landscape. As an advanced type of machine learning, deep learning applied to landscape image recognition can solve the problem of low quality and low efficiency of manual recognition. Based on this, this paper proposes a garden landscape image recognition algorithm based on SSD (Single Shot Multibox Detector), which realizes accurate extraction and recognition of image features by positioning the target, and can effectively improve the quality and efficiency of landscape image recognition. In order to test the feasibility of the algorithm proposed in this paper, experimental analysis was carried out in the CVPR 2023 landscape data set. The experimental results show that the algorithm has a high recognition accuracy for landscape images, and has excellent performance compared with traditional image recognition algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-driven control of a five-bar parallel robot with compliant joints CycleGAN generated pneumonia chest x-ray images: Evaluation with vision transformer Robust image registration for analysis of multisource eye fundus images An efficient two-heuristic algorithm for the student-project allocation with preferences over projects Dynamic task scheduling in edge cloud systems using deep recurrent neural networks and environment learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1