M. Karthikeyan, Ilhami Colak, S. Sagar Imambi, J. Joselin Jeya Sheela, Sruthi Nair, B. Umarani, Andril Alagusabai, K. Suriyakrishnaan, A. Rajaram
{"title":"通过时空融合变压器模型推进电力需求预测","authors":"M. Karthikeyan, Ilhami Colak, S. Sagar Imambi, J. Joselin Jeya Sheela, Sruthi Nair, B. Umarani, Andril Alagusabai, K. Suriyakrishnaan, A. Rajaram","doi":"10.3233/jifs-236036","DOIUrl":null,"url":null,"abstract":"This research paper introduces a cutting-edge approach to electric demand forecasting by incorporating the Temporal Fusion Transformer (TFT). As the landscape of demand forecasting becomes increasingly intricate, precise predictions are vital for effective energy management. To tackle this challenge, we leverage the sequential and temporal patterns in an extensive electric demand dataset spanning from 2003 to 2014. Our proposed Temporal Fusion Transformer model combines attention mechanisms with the transformer architecture, enabling it to adeptly capture intricate temporal dependencies. Thorough data preprocessing, including temporal embedding and external features, enhances prediction accuracy. Through rigorous evaluation, the TFT model surpasses existing forecasting techniques, showcasing its capacity for accurate, resilient, and adaptive predictions. This research contributes to the advancement of electric demand forecasting, harnessing the TFT’s capabilities to excel in capturing diverse temporal patterns. The findings hold the potential to enhance energy management and support decision-making in the energy sector, bridging the gap between innovation and practical utility.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing electric demand forecasting through the temporal fusion transformer model\",\"authors\":\"M. Karthikeyan, Ilhami Colak, S. Sagar Imambi, J. Joselin Jeya Sheela, Sruthi Nair, B. Umarani, Andril Alagusabai, K. Suriyakrishnaan, A. Rajaram\",\"doi\":\"10.3233/jifs-236036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper introduces a cutting-edge approach to electric demand forecasting by incorporating the Temporal Fusion Transformer (TFT). As the landscape of demand forecasting becomes increasingly intricate, precise predictions are vital for effective energy management. To tackle this challenge, we leverage the sequential and temporal patterns in an extensive electric demand dataset spanning from 2003 to 2014. Our proposed Temporal Fusion Transformer model combines attention mechanisms with the transformer architecture, enabling it to adeptly capture intricate temporal dependencies. Thorough data preprocessing, including temporal embedding and external features, enhances prediction accuracy. Through rigorous evaluation, the TFT model surpasses existing forecasting techniques, showcasing its capacity for accurate, resilient, and adaptive predictions. This research contributes to the advancement of electric demand forecasting, harnessing the TFT’s capabilities to excel in capturing diverse temporal patterns. The findings hold the potential to enhance energy management and support decision-making in the energy sector, bridging the gap between innovation and practical utility.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-236036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-236036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancing electric demand forecasting through the temporal fusion transformer model
This research paper introduces a cutting-edge approach to electric demand forecasting by incorporating the Temporal Fusion Transformer (TFT). As the landscape of demand forecasting becomes increasingly intricate, precise predictions are vital for effective energy management. To tackle this challenge, we leverage the sequential and temporal patterns in an extensive electric demand dataset spanning from 2003 to 2014. Our proposed Temporal Fusion Transformer model combines attention mechanisms with the transformer architecture, enabling it to adeptly capture intricate temporal dependencies. Thorough data preprocessing, including temporal embedding and external features, enhances prediction accuracy. Through rigorous evaluation, the TFT model surpasses existing forecasting techniques, showcasing its capacity for accurate, resilient, and adaptive predictions. This research contributes to the advancement of electric demand forecasting, harnessing the TFT’s capabilities to excel in capturing diverse temporal patterns. The findings hold the potential to enhance energy management and support decision-making in the energy sector, bridging the gap between innovation and practical utility.