通过时空融合变压器模型推进电力需求预测

M. Karthikeyan, Ilhami Colak, S. Sagar Imambi, J. Joselin Jeya Sheela, Sruthi Nair, B. Umarani, Andril Alagusabai, K. Suriyakrishnaan, A. Rajaram
{"title":"通过时空融合变压器模型推进电力需求预测","authors":"M. Karthikeyan, Ilhami Colak, S. Sagar Imambi, J. Joselin Jeya Sheela, Sruthi Nair, B. Umarani, Andril Alagusabai, K. Suriyakrishnaan, A. Rajaram","doi":"10.3233/jifs-236036","DOIUrl":null,"url":null,"abstract":"This research paper introduces a cutting-edge approach to electric demand forecasting by incorporating the Temporal Fusion Transformer (TFT). As the landscape of demand forecasting becomes increasingly intricate, precise predictions are vital for effective energy management. To tackle this challenge, we leverage the sequential and temporal patterns in an extensive electric demand dataset spanning from 2003 to 2014. Our proposed Temporal Fusion Transformer model combines attention mechanisms with the transformer architecture, enabling it to adeptly capture intricate temporal dependencies. Thorough data preprocessing, including temporal embedding and external features, enhances prediction accuracy. Through rigorous evaluation, the TFT model surpasses existing forecasting techniques, showcasing its capacity for accurate, resilient, and adaptive predictions. This research contributes to the advancement of electric demand forecasting, harnessing the TFT’s capabilities to excel in capturing diverse temporal patterns. The findings hold the potential to enhance energy management and support decision-making in the energy sector, bridging the gap between innovation and practical utility.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing electric demand forecasting through the temporal fusion transformer model\",\"authors\":\"M. Karthikeyan, Ilhami Colak, S. Sagar Imambi, J. Joselin Jeya Sheela, Sruthi Nair, B. Umarani, Andril Alagusabai, K. Suriyakrishnaan, A. Rajaram\",\"doi\":\"10.3233/jifs-236036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper introduces a cutting-edge approach to electric demand forecasting by incorporating the Temporal Fusion Transformer (TFT). As the landscape of demand forecasting becomes increasingly intricate, precise predictions are vital for effective energy management. To tackle this challenge, we leverage the sequential and temporal patterns in an extensive electric demand dataset spanning from 2003 to 2014. Our proposed Temporal Fusion Transformer model combines attention mechanisms with the transformer architecture, enabling it to adeptly capture intricate temporal dependencies. Thorough data preprocessing, including temporal embedding and external features, enhances prediction accuracy. Through rigorous evaluation, the TFT model surpasses existing forecasting techniques, showcasing its capacity for accurate, resilient, and adaptive predictions. This research contributes to the advancement of electric demand forecasting, harnessing the TFT’s capabilities to excel in capturing diverse temporal patterns. The findings hold the potential to enhance energy management and support decision-making in the energy sector, bridging the gap between innovation and practical utility.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-236036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-236036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文介绍了一种结合时态融合变压器(TFT)的电力需求预测前沿方法。随着需求预测领域变得越来越复杂,精确的预测对于有效的能源管理至关重要。为了应对这一挑战,我们利用了 2003 年至 2014 年广泛的电力需求数据集中的顺序和时间模式。我们提出的时态融合变压器模型将注意力机制与变压器架构相结合,使其能够巧妙地捕捉错综复杂的时间依赖关系。彻底的数据预处理,包括时间嵌入和外部特征,提高了预测的准确性。通过严格的评估,TFT 模型超越了现有的预测技术,展示了其准确、灵活和自适应的预测能力。这项研究利用 TFT 在捕捉不同时间模式方面的卓越能力,为推动电力需求预测做出了贡献。研究成果有望加强能源管理,支持能源领域的决策,缩小创新与实际应用之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing electric demand forecasting through the temporal fusion transformer model
This research paper introduces a cutting-edge approach to electric demand forecasting by incorporating the Temporal Fusion Transformer (TFT). As the landscape of demand forecasting becomes increasingly intricate, precise predictions are vital for effective energy management. To tackle this challenge, we leverage the sequential and temporal patterns in an extensive electric demand dataset spanning from 2003 to 2014. Our proposed Temporal Fusion Transformer model combines attention mechanisms with the transformer architecture, enabling it to adeptly capture intricate temporal dependencies. Thorough data preprocessing, including temporal embedding and external features, enhances prediction accuracy. Through rigorous evaluation, the TFT model surpasses existing forecasting techniques, showcasing its capacity for accurate, resilient, and adaptive predictions. This research contributes to the advancement of electric demand forecasting, harnessing the TFT’s capabilities to excel in capturing diverse temporal patterns. The findings hold the potential to enhance energy management and support decision-making in the energy sector, bridging the gap between innovation and practical utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-driven control of a five-bar parallel robot with compliant joints CycleGAN generated pneumonia chest x-ray images: Evaluation with vision transformer Robust image registration for analysis of multisource eye fundus images An efficient two-heuristic algorithm for the student-project allocation with preferences over projects Dynamic task scheduling in edge cloud systems using deep recurrent neural networks and environment learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1