{"title":"相关狄拉克半金属 Pv-CaIrO3 外延薄膜中应变诱导的电子结构调制","authors":"Jian-ming Ding, Zhengtai Liu, Jiayu Liu, Jian Yuan, Liyang Wei, Zhicheng Jiang, Yichen Yang, Chihao Li, Yilin Wang, Yanfeng Guo, Mao Ye, Jishan Liu, Dawei Shen","doi":"10.1116/6.0003462","DOIUrl":null,"url":null,"abstract":"Perovskite CaIrO3 is theoretically predicted to be a Dirac node semimetal near the Mott transition, which possesses a considerable interplay between electron correlations and spin–orbit coupling. Electron correlations can significantly tune the behavior of relativistic Dirac fermions. Here, we have grown high-quality perovskite CaIrO3 thin films on different substrates using oxide molecular beam epitaxy to modulate both electron correlations and Dirac electron states. Through in situ angle-resolved photoemission spectroscopy, we demonstrate a systematic evolution of the bandwidth and effective mass of Jeff=1/2 band in perovskite CaIrO3 induced by strain. The bandwidth of the Jeff=1/2 band undergoes an evident increase under in-plane compressive strain, which could be attributed to the weakening of electron correlations. The compressive strain can potentially shift the position of the Dirac node relative to the Fermi level and play a vital role in the transition from hole-type to electron-type transport characteristics. Our work provides a feasible approach for manipulating the topological Dirac electron states by engineering the strength of electron correlations.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"360 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-induced modulation of electronic structure in correlated Dirac semimetal Pv-CaIrO3 epitaxial thin films\",\"authors\":\"Jian-ming Ding, Zhengtai Liu, Jiayu Liu, Jian Yuan, Liyang Wei, Zhicheng Jiang, Yichen Yang, Chihao Li, Yilin Wang, Yanfeng Guo, Mao Ye, Jishan Liu, Dawei Shen\",\"doi\":\"10.1116/6.0003462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite CaIrO3 is theoretically predicted to be a Dirac node semimetal near the Mott transition, which possesses a considerable interplay between electron correlations and spin–orbit coupling. Electron correlations can significantly tune the behavior of relativistic Dirac fermions. Here, we have grown high-quality perovskite CaIrO3 thin films on different substrates using oxide molecular beam epitaxy to modulate both electron correlations and Dirac electron states. Through in situ angle-resolved photoemission spectroscopy, we demonstrate a systematic evolution of the bandwidth and effective mass of Jeff=1/2 band in perovskite CaIrO3 induced by strain. The bandwidth of the Jeff=1/2 band undergoes an evident increase under in-plane compressive strain, which could be attributed to the weakening of electron correlations. The compressive strain can potentially shift the position of the Dirac node relative to the Fermi level and play a vital role in the transition from hole-type to electron-type transport characteristics. Our work provides a feasible approach for manipulating the topological Dirac electron states by engineering the strength of electron correlations.\",\"PeriodicalId\":170900,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"360 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strain-induced modulation of electronic structure in correlated Dirac semimetal Pv-CaIrO3 epitaxial thin films
Perovskite CaIrO3 is theoretically predicted to be a Dirac node semimetal near the Mott transition, which possesses a considerable interplay between electron correlations and spin–orbit coupling. Electron correlations can significantly tune the behavior of relativistic Dirac fermions. Here, we have grown high-quality perovskite CaIrO3 thin films on different substrates using oxide molecular beam epitaxy to modulate both electron correlations and Dirac electron states. Through in situ angle-resolved photoemission spectroscopy, we demonstrate a systematic evolution of the bandwidth and effective mass of Jeff=1/2 band in perovskite CaIrO3 induced by strain. The bandwidth of the Jeff=1/2 band undergoes an evident increase under in-plane compressive strain, which could be attributed to the weakening of electron correlations. The compressive strain can potentially shift the position of the Dirac node relative to the Fermi level and play a vital role in the transition from hole-type to electron-type transport characteristics. Our work provides a feasible approach for manipulating the topological Dirac electron states by engineering the strength of electron correlations.