{"title":"基于深度学习的股市预测和金融管理投资模型","authors":"Yijing Huang, Vinay Vakharia","doi":"10.4018/joeuc.340383","DOIUrl":null,"url":null,"abstract":"This study explores the potential application of deep learning techniques in stock market prediction and investment decision-making. The authors used multi-temporary stock data (MTS) for effective multi-scale feature extraction in reverse cross attention (RCA), combined with improved whale optimization algorithm (IWOA) to select the optimal parameters for the bidirectional long short-term memory network (BiLSTM) and constructed an innovative RCA-BiLSTM stock intelligent trend prediction model. At the same time, a complete RCA-BiLSTM-DQN stock intelligent prediction and investment model was established by combining the deep Q network (DQN) investment strategy. The research results indicate that the model has excellent sequence modeling and decision learning capabilities, which can capture the nonlinear characteristics and complex correlations of the market and provide more accurate prediction results. It can continuously improve the robustness and stability of the model through adaptive learning and automatic optimization.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"5 3‐4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Stock Market Prediction and Investment Model for Financial Management\",\"authors\":\"Yijing Huang, Vinay Vakharia\",\"doi\":\"10.4018/joeuc.340383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the potential application of deep learning techniques in stock market prediction and investment decision-making. The authors used multi-temporary stock data (MTS) for effective multi-scale feature extraction in reverse cross attention (RCA), combined with improved whale optimization algorithm (IWOA) to select the optimal parameters for the bidirectional long short-term memory network (BiLSTM) and constructed an innovative RCA-BiLSTM stock intelligent trend prediction model. At the same time, a complete RCA-BiLSTM-DQN stock intelligent prediction and investment model was established by combining the deep Q network (DQN) investment strategy. The research results indicate that the model has excellent sequence modeling and decision learning capabilities, which can capture the nonlinear characteristics and complex correlations of the market and provide more accurate prediction results. It can continuously improve the robustness and stability of the model through adaptive learning and automatic optimization.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"5 3‐4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.340383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.340383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning-Based Stock Market Prediction and Investment Model for Financial Management
This study explores the potential application of deep learning techniques in stock market prediction and investment decision-making. The authors used multi-temporary stock data (MTS) for effective multi-scale feature extraction in reverse cross attention (RCA), combined with improved whale optimization algorithm (IWOA) to select the optimal parameters for the bidirectional long short-term memory network (BiLSTM) and constructed an innovative RCA-BiLSTM stock intelligent trend prediction model. At the same time, a complete RCA-BiLSTM-DQN stock intelligent prediction and investment model was established by combining the deep Q network (DQN) investment strategy. The research results indicate that the model has excellent sequence modeling and decision learning capabilities, which can capture the nonlinear characteristics and complex correlations of the market and provide more accurate prediction results. It can continuously improve the robustness and stability of the model through adaptive learning and automatic optimization.