{"title":"利用多项式回归简化与滚动接触相关的异型导轨寿命计算","authors":"Danny Staroszyk, Müller Jens, Ihlenfeldt Steffen","doi":"10.36897/jme/186130","DOIUrl":null,"url":null,"abstract":"The calculation of the lifespan of profile rail guides is an essential part in the design process of machines. Conventional lifespan models yield good results when calculating lifespan values under a homogeneous distribution of individual rolling contact forces on the raceways. In the case of an uneven load distribution, significantly too low lifespan values are calculated, resulting in a considerable loss of lifetime potential. The novel and experimentally validated rolling contact-based lifespan calculation (RCBL) takes the transferred force on each rolling element into account, resulting in more realistic lifespan values that can be up to 4 times higher than those obtained through the classical method. The disadvantage lies in the complex calculation of the necessary individual rolling contact forces, which until now has been done by using extensive finite element models, along with the computationally intensive optimization problem of the RCBL. To overcome these disadvantages, a method is introduced that efficiently calculates the individual rolling contact forces, taking into account all relevant system elasticities, and pre-solves the RCBL for a variety of potential superimposed load combinations. The results are subsequently approximated through an analytical multiparametric polynomial function and can be utilized with the conventional lifespan formula for rolling bearings.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplification of the rolling contact-related lifetime calculation of profiled rail guides with a polynomial regression\",\"authors\":\"Danny Staroszyk, Müller Jens, Ihlenfeldt Steffen\",\"doi\":\"10.36897/jme/186130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The calculation of the lifespan of profile rail guides is an essential part in the design process of machines. Conventional lifespan models yield good results when calculating lifespan values under a homogeneous distribution of individual rolling contact forces on the raceways. In the case of an uneven load distribution, significantly too low lifespan values are calculated, resulting in a considerable loss of lifetime potential. The novel and experimentally validated rolling contact-based lifespan calculation (RCBL) takes the transferred force on each rolling element into account, resulting in more realistic lifespan values that can be up to 4 times higher than those obtained through the classical method. The disadvantage lies in the complex calculation of the necessary individual rolling contact forces, which until now has been done by using extensive finite element models, along with the computationally intensive optimization problem of the RCBL. To overcome these disadvantages, a method is introduced that efficiently calculates the individual rolling contact forces, taking into account all relevant system elasticities, and pre-solves the RCBL for a variety of potential superimposed load combinations. The results are subsequently approximated through an analytical multiparametric polynomial function and can be utilized with the conventional lifespan formula for rolling bearings.\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/186130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/186130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Simplification of the rolling contact-related lifetime calculation of profiled rail guides with a polynomial regression
The calculation of the lifespan of profile rail guides is an essential part in the design process of machines. Conventional lifespan models yield good results when calculating lifespan values under a homogeneous distribution of individual rolling contact forces on the raceways. In the case of an uneven load distribution, significantly too low lifespan values are calculated, resulting in a considerable loss of lifetime potential. The novel and experimentally validated rolling contact-based lifespan calculation (RCBL) takes the transferred force on each rolling element into account, resulting in more realistic lifespan values that can be up to 4 times higher than those obtained through the classical method. The disadvantage lies in the complex calculation of the necessary individual rolling contact forces, which until now has been done by using extensive finite element models, along with the computationally intensive optimization problem of the RCBL. To overcome these disadvantages, a method is introduced that efficiently calculates the individual rolling contact forces, taking into account all relevant system elasticities, and pre-solves the RCBL for a variety of potential superimposed load combinations. The results are subsequently approximated through an analytical multiparametric polynomial function and can be utilized with the conventional lifespan formula for rolling bearings.
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.