通过机器学习建模实现基于挤压的高精度生物打印开环控制系统

Q2 Engineering Journal of Machine Engineering Pub Date : 2024-03-19 DOI:10.36897/jme/186044
Javier Arduengo, Nicolas Hascoet, Francisco Chinesta, J. Hascoet
{"title":"通过机器学习建模实现基于挤压的高精度生物打印开环控制系统","authors":"Javier Arduengo, Nicolas Hascoet, Francisco Chinesta, J. Hascoet","doi":"10.36897/jme/186044","DOIUrl":null,"url":null,"abstract":"Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D bioprinting adopts a layer-by-layer method, using materials known as bio-inks to build structures resembling tissues. This study introduces an open-loop control system designed to improve the accuracy of extrusion-based bioprinting techniques, which is composed of a specific experimental setup and a series of algorithms and models. Firstly, a method employing Logistic Regression is used to select the tests that will serve to train and test the following model. Then, using a Machine Learning Algorithm, a model that allows the optimization of printing parameters and enables process control through an open-loop system was developed. Through rigorous experimentation and validation, it is shown that the model exhibits a high degree of accuracy in independent tests. Thus, the control system offers predictability and adaptability capabilities to ensure the consistent production of high-quality bioprinted structures. Experimental results confirm the efficacy of this machine learning model and the open-loop control system in achieving optimal bioprinting outcomes.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-Loop Control System for High Precision Extrusion-Based Bioprinting Through Machine Learning Modeling\",\"authors\":\"Javier Arduengo, Nicolas Hascoet, Francisco Chinesta, J. Hascoet\",\"doi\":\"10.36897/jme/186044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D bioprinting adopts a layer-by-layer method, using materials known as bio-inks to build structures resembling tissues. This study introduces an open-loop control system designed to improve the accuracy of extrusion-based bioprinting techniques, which is composed of a specific experimental setup and a series of algorithms and models. Firstly, a method employing Logistic Regression is used to select the tests that will serve to train and test the following model. Then, using a Machine Learning Algorithm, a model that allows the optimization of printing parameters and enables process control through an open-loop system was developed. Through rigorous experimentation and validation, it is shown that the model exhibits a high degree of accuracy in independent tests. Thus, the control system offers predictability and adaptability capabilities to ensure the consistent production of high-quality bioprinted structures. Experimental results confirm the efficacy of this machine learning model and the open-loop control system in achieving optimal bioprinting outcomes.\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/186044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/186044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

生物打印是一种利用三维打印技术将细胞、生长因子和生物材料结合起来制造生物医学部件的工艺,其目的通常是模仿天然组织的特征。通常,三维生物打印采用逐层打印的方法,使用称为生物墨水的材料来构建类似组织的结构。本研究介绍了一种开环控制系统,旨在提高基于挤压的生物打印技术的精度,该系统由特定的实验装置和一系列算法及模型组成。首先,采用 Logistic 回归方法选择测试,用于训练和测试以下模型。然后,利用机器学习算法,开发出一个可以优化印刷参数并通过开环系统实现过程控制的模型。通过严格的实验和验证,该模型在独立测试中表现出很高的准确性。因此,该控制系统具有可预测性和适应能力,可确保始终如一地生产出高质量的生物打印结构。实验结果证实了该机器学习模型和开环控制系统在实现最佳生物打印结果方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Open-Loop Control System for High Precision Extrusion-Based Bioprinting Through Machine Learning Modeling
Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D bioprinting adopts a layer-by-layer method, using materials known as bio-inks to build structures resembling tissues. This study introduces an open-loop control system designed to improve the accuracy of extrusion-based bioprinting techniques, which is composed of a specific experimental setup and a series of algorithms and models. Firstly, a method employing Logistic Regression is used to select the tests that will serve to train and test the following model. Then, using a Machine Learning Algorithm, a model that allows the optimization of printing parameters and enables process control through an open-loop system was developed. Through rigorous experimentation and validation, it is shown that the model exhibits a high degree of accuracy in independent tests. Thus, the control system offers predictability and adaptability capabilities to ensure the consistent production of high-quality bioprinted structures. Experimental results confirm the efficacy of this machine learning model and the open-loop control system in achieving optimal bioprinting outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1