R. Moreno-Vozmediano, R. Montero, E. Huedo, I. Llorente
{"title":"面向 5G 边缘基础设施的智能资源协调","authors":"R. Moreno-Vozmediano, R. Montero, E. Huedo, I. Llorente","doi":"10.3390/fi16030103","DOIUrl":null,"url":null,"abstract":"The adoption of edge infrastructure in 5G environments stands out as a transformative technology aimed at meeting the increasing demands of latency-sensitive and data-intensive applications. This research paper presents a comprehensive study on the intelligent orchestration of 5G edge computing infrastructures. The proposed Smart 5G Edge-Cloud Management Architecture, built upon an OpenNebula foundation, incorporates a ONEedge5G experimental component, which offers intelligent workload forecasting and infrastructure orchestration and automation capabilities, for optimal allocation of virtual resources across diverse edge locations. The research evaluated different forecasting models, based both on traditional statistical techniques and machine learning techniques, comparing their accuracy in CPU usage prediction for a dataset of virtual machines (VMs). Additionally, an integer linear programming formulation was proposed to solve the optimization problem of mapping VMs to physical servers in distributed edge infrastructure. Different optimization criteria such as minimizing server usage, load balancing, and reducing latency violations were considered, along with mapping constraints. Comprehensive tests and experiments were conducted to evaluate the efficacy of the proposed architecture.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Resource Orchestration for 5G Edge Infrastructures\",\"authors\":\"R. Moreno-Vozmediano, R. Montero, E. Huedo, I. Llorente\",\"doi\":\"10.3390/fi16030103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adoption of edge infrastructure in 5G environments stands out as a transformative technology aimed at meeting the increasing demands of latency-sensitive and data-intensive applications. This research paper presents a comprehensive study on the intelligent orchestration of 5G edge computing infrastructures. The proposed Smart 5G Edge-Cloud Management Architecture, built upon an OpenNebula foundation, incorporates a ONEedge5G experimental component, which offers intelligent workload forecasting and infrastructure orchestration and automation capabilities, for optimal allocation of virtual resources across diverse edge locations. The research evaluated different forecasting models, based both on traditional statistical techniques and machine learning techniques, comparing their accuracy in CPU usage prediction for a dataset of virtual machines (VMs). Additionally, an integer linear programming formulation was proposed to solve the optimization problem of mapping VMs to physical servers in distributed edge infrastructure. Different optimization criteria such as minimizing server usage, load balancing, and reducing latency violations were considered, along with mapping constraints. Comprehensive tests and experiments were conducted to evaluate the efficacy of the proposed architecture.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16030103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16030103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Intelligent Resource Orchestration for 5G Edge Infrastructures
The adoption of edge infrastructure in 5G environments stands out as a transformative technology aimed at meeting the increasing demands of latency-sensitive and data-intensive applications. This research paper presents a comprehensive study on the intelligent orchestration of 5G edge computing infrastructures. The proposed Smart 5G Edge-Cloud Management Architecture, built upon an OpenNebula foundation, incorporates a ONEedge5G experimental component, which offers intelligent workload forecasting and infrastructure orchestration and automation capabilities, for optimal allocation of virtual resources across diverse edge locations. The research evaluated different forecasting models, based both on traditional statistical techniques and machine learning techniques, comparing their accuracy in CPU usage prediction for a dataset of virtual machines (VMs). Additionally, an integer linear programming formulation was proposed to solve the optimization problem of mapping VMs to physical servers in distributed edge infrastructure. Different optimization criteria such as minimizing server usage, load balancing, and reducing latency violations were considered, along with mapping constraints. Comprehensive tests and experiments were conducted to evaluate the efficacy of the proposed architecture.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.