{"title":"双酚推进剂的液滴碰撞","authors":"Chengming He, ZhiXia He, Peng Zhang","doi":"10.1002/dro2.116","DOIUrl":null,"url":null,"abstract":"<p>In the present mini-review, droplet impacting on a liquid pool, jet impingement, and binary droplet collision of nonreacting liquids are first summarized in terms of basic phenomena and the corresponding nondimensional parameters. Then, two representative hypergolic bipropellant systems, a hypergolic fuel of <i>N,N,N′,N′</i>-tetramethylethylenediamine (TMEDA) and an oxidizer of white fuming nitric acid (WFNA) and a monoethanolamine-based fuel (MEA-NaBH<sub>4</sub>) and a high-density hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), are discussed in detail to unveil the rich underlying physics such as liquid-phase reaction, heat transfer, phase change, and gas-phase reaction. This review focuses on quantifying and interpreting the parametric dependence of the gas-phase ignition induced by droplet collision of liquid hypergolic propellants. The advances in droplet collision of hypergolic propellants are important for modeling the real hypergolic impinging-jet (spray) combustion and for the design optimization of orbit-maneuver rocket engines.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.116","citationCount":"0","resultStr":"{\"title\":\"Droplet collision of hypergolic propellants\",\"authors\":\"Chengming He, ZhiXia He, Peng Zhang\",\"doi\":\"10.1002/dro2.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present mini-review, droplet impacting on a liquid pool, jet impingement, and binary droplet collision of nonreacting liquids are first summarized in terms of basic phenomena and the corresponding nondimensional parameters. Then, two representative hypergolic bipropellant systems, a hypergolic fuel of <i>N,N,N′,N′</i>-tetramethylethylenediamine (TMEDA) and an oxidizer of white fuming nitric acid (WFNA) and a monoethanolamine-based fuel (MEA-NaBH<sub>4</sub>) and a high-density hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), are discussed in detail to unveil the rich underlying physics such as liquid-phase reaction, heat transfer, phase change, and gas-phase reaction. This review focuses on quantifying and interpreting the parametric dependence of the gas-phase ignition induced by droplet collision of liquid hypergolic propellants. The advances in droplet collision of hypergolic propellants are important for modeling the real hypergolic impinging-jet (spray) combustion and for the design optimization of orbit-maneuver rocket engines.</p>\",\"PeriodicalId\":100381,\"journal\":{\"name\":\"Droplet\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.116\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Droplet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dro2.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the present mini-review, droplet impacting on a liquid pool, jet impingement, and binary droplet collision of nonreacting liquids are first summarized in terms of basic phenomena and the corresponding nondimensional parameters. Then, two representative hypergolic bipropellant systems, a hypergolic fuel of N,N,N′,N′-tetramethylethylenediamine (TMEDA) and an oxidizer of white fuming nitric acid (WFNA) and a monoethanolamine-based fuel (MEA-NaBH4) and a high-density hydrogen peroxide (H2O2), are discussed in detail to unveil the rich underlying physics such as liquid-phase reaction, heat transfer, phase change, and gas-phase reaction. This review focuses on quantifying and interpreting the parametric dependence of the gas-phase ignition induced by droplet collision of liquid hypergolic propellants. The advances in droplet collision of hypergolic propellants are important for modeling the real hypergolic impinging-jet (spray) combustion and for the design optimization of orbit-maneuver rocket engines.