使用双层集合机器学习算法预测道路交通事故

IF 3.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied System Innovation Pub Date : 2024-03-18 DOI:10.3390/asi7020025
James Oduor Oyoo, J. Wekesa, Kennedy Ogada
{"title":"使用双层集合机器学习算法预测道路交通事故","authors":"James Oduor Oyoo, J. Wekesa, Kennedy Ogada","doi":"10.3390/asi7020025","DOIUrl":null,"url":null,"abstract":"Road traffic collisions are among the world’s critical issues, causing many casualties, deaths, and economic losses, with a disproportionate burden falling on developing countries. Existing research has been conducted to analyze this situation using different approaches and techniques at different stretches and intersections. In this paper, we propose a two-layer ensemble machine learning (ML) technique to assess and predict road traffic collisions using data from a driving simulator. The first (base) layer integrates supervised learning techniques, namely k- Nearest Neighbors (k-NN), AdaBoost, Naive Bayes (NB), and Decision Trees (DT). The second layer predicts road collisions by combining the base layer outputs by employing the stacking ensemble method, using logistic regression as a meta-classifier. In addition, the synthetic minority oversampling technique (SMOTE) was performed to handle the data imbalance before training the model. To simplify the model, the particle swarm optimization (PSO) algorithm was used to select the most important features in our dataset. The proposed two-layer ensemble model had the best outcomes with an accuracy of 88%, an F1 score of 83%, and an AUC of 86% as compared with k-NN, DT, NB, and AdaBoost. The proposed two-layer ensemble model can be used in the future for theoretical as well as practical applications, such as road safety management for improving existing conditions of the road network and formulating traffic safety policies based on evidence.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Road Traffic Collisions Using a Two-Layer Ensemble Machine Learning Algorithm\",\"authors\":\"James Oduor Oyoo, J. Wekesa, Kennedy Ogada\",\"doi\":\"10.3390/asi7020025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road traffic collisions are among the world’s critical issues, causing many casualties, deaths, and economic losses, with a disproportionate burden falling on developing countries. Existing research has been conducted to analyze this situation using different approaches and techniques at different stretches and intersections. In this paper, we propose a two-layer ensemble machine learning (ML) technique to assess and predict road traffic collisions using data from a driving simulator. The first (base) layer integrates supervised learning techniques, namely k- Nearest Neighbors (k-NN), AdaBoost, Naive Bayes (NB), and Decision Trees (DT). The second layer predicts road collisions by combining the base layer outputs by employing the stacking ensemble method, using logistic regression as a meta-classifier. In addition, the synthetic minority oversampling technique (SMOTE) was performed to handle the data imbalance before training the model. To simplify the model, the particle swarm optimization (PSO) algorithm was used to select the most important features in our dataset. The proposed two-layer ensemble model had the best outcomes with an accuracy of 88%, an F1 score of 83%, and an AUC of 86% as compared with k-NN, DT, NB, and AdaBoost. The proposed two-layer ensemble model can be used in the future for theoretical as well as practical applications, such as road safety management for improving existing conditions of the road network and formulating traffic safety policies based on evidence.\",\"PeriodicalId\":36273,\"journal\":{\"name\":\"Applied System Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied System Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/asi7020025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi7020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

道路交通碰撞是世界性的重大问题之一,造成了大量人员伤亡和经济损失,发展中国家的负担尤为沉重。现有研究已在不同路段和交叉路口采用不同方法和技术对这一情况进行了分析。在本文中,我们提出了一种双层集合机器学习(ML)技术,利用驾驶模拟器的数据来评估和预测道路交通碰撞。第一层(基础层)集成了监督学习技术,即 k- Nearest Neighbors (k-NN)、AdaBoost、Naive Bayes (NB) 和决策树 (DT)。第二层采用堆叠集合方法,将逻辑回归作为元分类器,结合基础层的输出预测道路碰撞。此外,在训练模型之前,还采用了合成少数超采样技术(SMOTE)来处理数据不平衡问题。为了简化模型,我们使用了粒子群优化(PSO)算法来选择数据集中最重要的特征。与 k-NN、DT、NB 和 AdaBoost 相比,所提出的双层集合模型的结果最好,准确率为 88%,F1 分数为 83%,AUC 为 86%。所提出的双层集合模型未来可用于理论和实际应用,如道路安全管理,以改善道路网络的现有条件,并根据证据制定交通安全政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Road Traffic Collisions Using a Two-Layer Ensemble Machine Learning Algorithm
Road traffic collisions are among the world’s critical issues, causing many casualties, deaths, and economic losses, with a disproportionate burden falling on developing countries. Existing research has been conducted to analyze this situation using different approaches and techniques at different stretches and intersections. In this paper, we propose a two-layer ensemble machine learning (ML) technique to assess and predict road traffic collisions using data from a driving simulator. The first (base) layer integrates supervised learning techniques, namely k- Nearest Neighbors (k-NN), AdaBoost, Naive Bayes (NB), and Decision Trees (DT). The second layer predicts road collisions by combining the base layer outputs by employing the stacking ensemble method, using logistic regression as a meta-classifier. In addition, the synthetic minority oversampling technique (SMOTE) was performed to handle the data imbalance before training the model. To simplify the model, the particle swarm optimization (PSO) algorithm was used to select the most important features in our dataset. The proposed two-layer ensemble model had the best outcomes with an accuracy of 88%, an F1 score of 83%, and an AUC of 86% as compared with k-NN, DT, NB, and AdaBoost. The proposed two-layer ensemble model can be used in the future for theoretical as well as practical applications, such as road safety management for improving existing conditions of the road network and formulating traffic safety policies based on evidence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied System Innovation
Applied System Innovation Mathematics-Applied Mathematics
CiteScore
7.90
自引率
5.30%
发文量
102
审稿时长
11 weeks
期刊最新文献
Use of Digital Technology in Integrated Mathematics Education Exploring the Intersection of Ergonomics, Design Thinking, and AI/ML in Design Innovation An Image-Retrieval Method Based on Cross-Hardware Platform Features Examining Hybrid Nanofluid Flow Dynamics in the Conical Gap between a Rotating Disk and Cone Surface: An Artificial Neural Network Approach Buzzing through Data: Advancing Bee Species Identification with Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1