在闭环集成 5G 光模块中设计低功耗微型热电恒温器的多因素路线图

IF 24.5 Q1 CHEMISTRY, PHYSICAL Interdisciplinary Materials Pub Date : 2024-03-17 DOI:10.1002/idm2.12156
Dongwang Yang, Yubing Xing, Jiang Wang, Kai Hu, Yani Xiao, Kechen Tang, Jianan Lyu, Junhao Li, Yutian Liu, Peng Zhou, Yuan Yu, Yonggao Yan, Xinfeng Tang
{"title":"在闭环集成 5G 光模块中设计低功耗微型热电恒温器的多因素路线图","authors":"Dongwang Yang,&nbsp;Yubing Xing,&nbsp;Jiang Wang,&nbsp;Kai Hu,&nbsp;Yani Xiao,&nbsp;Kechen Tang,&nbsp;Jianan Lyu,&nbsp;Junhao Li,&nbsp;Yutian Liu,&nbsp;Peng Zhou,&nbsp;Yuan Yu,&nbsp;Yonggao Yan,&nbsp;Xinfeng Tang","doi":"10.1002/idm2.12156","DOIUrl":null,"url":null,"abstract":"<p>As the core components of fifth-generation (5G) communication technology, optical modules should be consistently miniaturized in size while improving their level of integration. This inevitably leads to a dramatic spike in power consumption and a consequent increase in heat flow density when operating in a confined space. To ensure a successful start-up and operation of 5G optical modules, active cooling and precise temperature control via the Peltier effect in confined space is essential yet challenging. In this work, p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and n-type Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> bulk thermoelectric (TE) materials are used, and a micro thermoelectric thermostat (micro-TET) (device size, 2 × 9.3 × 1.1 mm<sup>3</sup>; leg size, 0.4 × 0.4 × 0.5 mm<sup>3</sup>; number of legs, 44) is successfully integrated into a 5G optical module with Quad Small Form Pluggable 28 interface. As a result, the internal temperature of this kind of optical module is always maintained at 45.7°C and the optical power is up to 7.4 dBm. Furthermore, a multifactor design roadmap is created based on a 3D numerical model using the ANSYS finite element method, taking into account the number of legs (<i>N</i>), leg width (<i>W</i>), leg length (<i>L</i>), filling atmosphere, electric contact resistance (<i>R</i><sub>ec</sub>), thermal contact resistance (<i>R</i><sub>tc</sub>), ambient temperature (<i>T</i><sub>a</sub>), and the heat generated by the laser source (<i>Q</i><sub>L</sub>). It facilitates the integrated fabrication of micro-TET, and shows the way to enhance packaging and performance under different operating conditions. According to the roadmap, the micro-TET (2 × 9.3 × 1 mm<sup>3</sup>, <i>W</i> = 0.3 mm, <i>L</i> = 0.4 mm, <i>N</i> = 68 legs) is fabricated and consumes only 0.89 W in cooling mode (<i>Q</i><sub>L</sub> = 0.7 W, <i>T</i><sub>a</sub> = 80°C) and 0.36 W in heating mode (<i>T</i><sub>a</sub> = 0°C) to maintain the laser temperature of 50°C. This research will hopefully be applied to other microprocessors for precise temperature control and integrated manufacturing.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"326-337"},"PeriodicalIF":24.5000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12156","citationCount":"0","resultStr":"{\"title\":\"Multifactor roadmap for designing low-power-consumed micro thermoelectric thermostats in a closed-loop integrated 5G optical module\",\"authors\":\"Dongwang Yang,&nbsp;Yubing Xing,&nbsp;Jiang Wang,&nbsp;Kai Hu,&nbsp;Yani Xiao,&nbsp;Kechen Tang,&nbsp;Jianan Lyu,&nbsp;Junhao Li,&nbsp;Yutian Liu,&nbsp;Peng Zhou,&nbsp;Yuan Yu,&nbsp;Yonggao Yan,&nbsp;Xinfeng Tang\",\"doi\":\"10.1002/idm2.12156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the core components of fifth-generation (5G) communication technology, optical modules should be consistently miniaturized in size while improving their level of integration. This inevitably leads to a dramatic spike in power consumption and a consequent increase in heat flow density when operating in a confined space. To ensure a successful start-up and operation of 5G optical modules, active cooling and precise temperature control via the Peltier effect in confined space is essential yet challenging. In this work, p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and n-type Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> bulk thermoelectric (TE) materials are used, and a micro thermoelectric thermostat (micro-TET) (device size, 2 × 9.3 × 1.1 mm<sup>3</sup>; leg size, 0.4 × 0.4 × 0.5 mm<sup>3</sup>; number of legs, 44) is successfully integrated into a 5G optical module with Quad Small Form Pluggable 28 interface. As a result, the internal temperature of this kind of optical module is always maintained at 45.7°C and the optical power is up to 7.4 dBm. Furthermore, a multifactor design roadmap is created based on a 3D numerical model using the ANSYS finite element method, taking into account the number of legs (<i>N</i>), leg width (<i>W</i>), leg length (<i>L</i>), filling atmosphere, electric contact resistance (<i>R</i><sub>ec</sub>), thermal contact resistance (<i>R</i><sub>tc</sub>), ambient temperature (<i>T</i><sub>a</sub>), and the heat generated by the laser source (<i>Q</i><sub>L</sub>). It facilitates the integrated fabrication of micro-TET, and shows the way to enhance packaging and performance under different operating conditions. According to the roadmap, the micro-TET (2 × 9.3 × 1 mm<sup>3</sup>, <i>W</i> = 0.3 mm, <i>L</i> = 0.4 mm, <i>N</i> = 68 legs) is fabricated and consumes only 0.89 W in cooling mode (<i>Q</i><sub>L</sub> = 0.7 W, <i>T</i><sub>a</sub> = 80°C) and 0.36 W in heating mode (<i>T</i><sub>a</sub> = 0°C) to maintain the laser temperature of 50°C. This research will hopefully be applied to other microprocessors for precise temperature control and integrated manufacturing.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"3 2\",\"pages\":\"326-337\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12156\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

作为第五代(5G)通信技术的核心部件,光模块应不断缩小尺寸,同时提高集成度。这不可避免地会导致功耗急剧上升,在狭小空间内运行时热流密度也会随之增加。为确保 5G 光模块的成功启动和运行,通过密闭空间内的珀尔帖效应进行主动冷却和精确温度控制至关重要,但也极具挑战性。在这项工作中,使用了 p 型 Bi0.5Sb1.5Te3 和 n 型 Bi2Te2.7Se0.3 块状热电(TE)材料,并将微型热电恒温器(micro-TET)(器件尺寸为 2 × 9.3 × 1.1 mm3;支脚尺寸为 0.4 × 0.4 × 0.5 mm3;支脚数量为 44)成功地集成到了带有 Quad Small Form Pluggable 28 接口的 5G 光模块中。因此,这种光模块的内部温度始终保持在 45.7°C,光功率高达 7.4 dBm。此外,基于使用 ANSYS 有限元方法建立的三维数值模型,并考虑到引脚数量(N)、引脚宽度(W)、引脚长度(L)、填充气氛、电接触电阻(Rec)、热接触电阻(Rtc)、环境温度(Ta)和激光源产生的热量(QL),还创建了多因素设计路线图。它促进了微型 TET 的集成制造,并指明了在不同工作条件下提高封装和性能的途径。根据路线图,制造出的 micro-TET(2 × 9.3 × 1 mm3,W = 0.3 mm,L = 0.4 mm,N = 68 脚)在冷却模式(QL = 0.7 W,Ta = 80°C)下仅消耗 0.89 W,在加热模式(Ta = 0°C)下消耗 0.36 W,以维持 50°C 的激光温度。这项研究有望应用于其他微处理器的精确温度控制和集成制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifactor roadmap for designing low-power-consumed micro thermoelectric thermostats in a closed-loop integrated 5G optical module

As the core components of fifth-generation (5G) communication technology, optical modules should be consistently miniaturized in size while improving their level of integration. This inevitably leads to a dramatic spike in power consumption and a consequent increase in heat flow density when operating in a confined space. To ensure a successful start-up and operation of 5G optical modules, active cooling and precise temperature control via the Peltier effect in confined space is essential yet challenging. In this work, p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 bulk thermoelectric (TE) materials are used, and a micro thermoelectric thermostat (micro-TET) (device size, 2 × 9.3 × 1.1 mm3; leg size, 0.4 × 0.4 × 0.5 mm3; number of legs, 44) is successfully integrated into a 5G optical module with Quad Small Form Pluggable 28 interface. As a result, the internal temperature of this kind of optical module is always maintained at 45.7°C and the optical power is up to 7.4 dBm. Furthermore, a multifactor design roadmap is created based on a 3D numerical model using the ANSYS finite element method, taking into account the number of legs (N), leg width (W), leg length (L), filling atmosphere, electric contact resistance (Rec), thermal contact resistance (Rtc), ambient temperature (Ta), and the heat generated by the laser source (QL). It facilitates the integrated fabrication of micro-TET, and shows the way to enhance packaging and performance under different operating conditions. According to the roadmap, the micro-TET (2 × 9.3 × 1 mm3, W = 0.3 mm, L = 0.4 mm, N = 68 legs) is fabricated and consumes only 0.89 W in cooling mode (QL = 0.7 W, Ta = 80°C) and 0.36 W in heating mode (Ta = 0°C) to maintain the laser temperature of 50°C. This research will hopefully be applied to other microprocessors for precise temperature control and integrated manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Outside Front Cover: Volume 3 Issue 6 Outside Back Cover: Volume 3 Issue 6 Idea of macro-scale and micro-scale prestressed ceramics Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1