基于微带线的紧凑型串联馈电圆极化贴片阵列

Gengming Wei, Le Chang, Yu Wu
{"title":"基于微带线的紧凑型串联馈电圆极化贴片阵列","authors":"Gengming Wei, Le Chang, Yu Wu","doi":"10.13052/2023.aces.j.381002","DOIUrl":null,"url":null,"abstract":"A compact single-layer circularly polarized (CP) antenna array is proposed in this paper for 5G/6G applications. The conventional microstrip line is modified as a feeding network by periodically and alternatively loading field blocking stubs, producing a linearly polarized in-phase radiative field aperture. By adding CP corner-truncated patches beside these in-phase fields, a linear high-gain CP antenna array excited by a single feed is obtained. The feasibility of the proposed design is demonstrated through the fabrication and measurement of a 16-element linear array. The results indicate that the 3 dB axial ratio bandwidth is 3.5% (19.60∼20.30 GHz), the -10 dB impedance bandwidth totally covers the 3 dB axial ratio bandwidth, and the peak realized gain is 14.9 dBi under an antenna length of 5.69λ0. This proposed strategy provides a very compact antenna structure to achieve high-gain CP radiation without the requirement of impedance transformers, phase shifters, and open-stop-band suppressing measures. Moreover, the antenna has a per-unit-length CP gain of 5.5/λ0, which is superior to many single-layer high-gain CPantennas.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"16 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Series-fed Circularly-polarized Patch Array basedon Microstrip Line\",\"authors\":\"Gengming Wei, Le Chang, Yu Wu\",\"doi\":\"10.13052/2023.aces.j.381002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact single-layer circularly polarized (CP) antenna array is proposed in this paper for 5G/6G applications. The conventional microstrip line is modified as a feeding network by periodically and alternatively loading field blocking stubs, producing a linearly polarized in-phase radiative field aperture. By adding CP corner-truncated patches beside these in-phase fields, a linear high-gain CP antenna array excited by a single feed is obtained. The feasibility of the proposed design is demonstrated through the fabrication and measurement of a 16-element linear array. The results indicate that the 3 dB axial ratio bandwidth is 3.5% (19.60∼20.30 GHz), the -10 dB impedance bandwidth totally covers the 3 dB axial ratio bandwidth, and the peak realized gain is 14.9 dBi under an antenna length of 5.69λ0. This proposed strategy provides a very compact antenna structure to achieve high-gain CP radiation without the requirement of impedance transformers, phase shifters, and open-stop-band suppressing measures. Moreover, the antenna has a per-unit-length CP gain of 5.5/λ0, which is superior to many single-layer high-gain CPantennas.\",\"PeriodicalId\":250668,\"journal\":{\"name\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/2023.aces.j.381002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.381002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对 5G/6G 应用提出了一种紧凑型单层圆极化(CP)天线阵列。通过周期性地交替加载场阻塞存根,将传统微带线修改为馈电网络,从而产生线性极化同相辐射场孔径。通过在这些同相场旁边添加 CP 角截断贴片,可获得由单个馈电激励的线性高增益 CP 天线阵列。通过制作和测量 16 元线性阵列,证明了所提设计的可行性。结果表明,3 dB 轴向比带宽为 3.5%(19.60∼20.30 GHz),-10 dB 阻抗带宽完全覆盖了 3 dB 轴向比带宽,在天线长度为 5.69λ0 的情况下,实现的峰值增益为 14.9 dBi。这一建议策略提供了一种非常紧凑的天线结构,无需阻抗变换器、移相器和开挡带抑制措施即可实现高增益 CP 辐射。此外,该天线的单位长度 CP 增益为 5.5/λ0,优于许多单层高增益 CP 天线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compact Series-fed Circularly-polarized Patch Array basedon Microstrip Line
A compact single-layer circularly polarized (CP) antenna array is proposed in this paper for 5G/6G applications. The conventional microstrip line is modified as a feeding network by periodically and alternatively loading field blocking stubs, producing a linearly polarized in-phase radiative field aperture. By adding CP corner-truncated patches beside these in-phase fields, a linear high-gain CP antenna array excited by a single feed is obtained. The feasibility of the proposed design is demonstrated through the fabrication and measurement of a 16-element linear array. The results indicate that the 3 dB axial ratio bandwidth is 3.5% (19.60∼20.30 GHz), the -10 dB impedance bandwidth totally covers the 3 dB axial ratio bandwidth, and the peak realized gain is 14.9 dBi under an antenna length of 5.69λ0. This proposed strategy provides a very compact antenna structure to achieve high-gain CP radiation without the requirement of impedance transformers, phase shifters, and open-stop-band suppressing measures. Moreover, the antenna has a per-unit-length CP gain of 5.5/λ0, which is superior to many single-layer high-gain CPantennas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 3-D Global FDTD Courant-limit Model of the Earth for Long-time-span and High-altitude Applications Uncertainty Quantification and Optimal Design of EV-WPT System Efficiency based on Adaptive Gaussian Process Regression Single-mode Condition and Bending Loss Analysis of Ultrafast Laser-inscribed Mid-infrared Waveguides in GeAsSe Chalcogenide Glass Design of Wilkinson Power Dividers with SITL Compensated Microstrip Bandpass Filters Resonant Frequency Modelling of Microstrip Antennas by Consensus Network and Student’s-T Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1