{"title":"使用 LS-SLM 和 PCC-LDA 在文章推荐系统中通过主题建模进行有效的社区检测","authors":"Sandeep Kumar Rachamadugu, T.P. Pushphavathi","doi":"10.3233/jifs-233851","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative approach, the LS-SLM (Local Search with Smart Local Moving) technique, for enhancing the efficiency of article recommendation systems based on community detection and topic modeling. The methodology undergoes rigorous evaluation using a comprehensive dataset extracted from the “dblp. v12.json” citation network. Experimental results presented herein provide a clear depiction of the superior performance of the LS-SLM technique when compared to established algorithms, namely the Louvain Algorithm (LA), Stochastic Block Model (SBM), Fast Greedy Algorithm (FGA), and Smart Local Moving (SLM). The evaluation metrics include accuracy, precision, specificity, recall, F-Score, modularity, Normalized Mutual Information (NMI), betweenness centrality (BTC), and community detection time. Notably, the LS-SLM technique outperforms existing solutions across all metrics. For instance, the proposed methodology achieves an accuracy of 96.32%, surpassing LA by 16% and demonstrating a 10.6% improvement over SBM. Precision, a critical measure of relevance, stands at 96.32%, showcasing a significant advancement over GCR-GAN (61.7%) and CR-HBNE (45.9%). Additionally, sensitivity analysis reveals that the LS-SLM technique achieves the highest sensitivity value of 96.5487%, outperforming LA by 14.2%. The LS-SLM also demonstrates superior specificity and recall, with values of 96.5478% and 96.5487%, respectively. The modularity performance is exceptional, with LS-SLM obtaining 95.6119%, significantly outpacing SLM, FGA, SBM, and LA. Furthermore, the LS-SLM technique excels in community detection time, completing the process in 38,652 ms, showcasing efficiency gains over existing techniques. The BTC analysis indicates that LS-SLM achieves a value of 94.6650%, demonstrating its proficiency in controlling information flow within the network.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective community detection with topic modeling in article recommender systems using LS-SLM and PCC-LDA\",\"authors\":\"Sandeep Kumar Rachamadugu, T.P. Pushphavathi\",\"doi\":\"10.3233/jifs-233851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an innovative approach, the LS-SLM (Local Search with Smart Local Moving) technique, for enhancing the efficiency of article recommendation systems based on community detection and topic modeling. The methodology undergoes rigorous evaluation using a comprehensive dataset extracted from the “dblp. v12.json” citation network. Experimental results presented herein provide a clear depiction of the superior performance of the LS-SLM technique when compared to established algorithms, namely the Louvain Algorithm (LA), Stochastic Block Model (SBM), Fast Greedy Algorithm (FGA), and Smart Local Moving (SLM). The evaluation metrics include accuracy, precision, specificity, recall, F-Score, modularity, Normalized Mutual Information (NMI), betweenness centrality (BTC), and community detection time. Notably, the LS-SLM technique outperforms existing solutions across all metrics. For instance, the proposed methodology achieves an accuracy of 96.32%, surpassing LA by 16% and demonstrating a 10.6% improvement over SBM. Precision, a critical measure of relevance, stands at 96.32%, showcasing a significant advancement over GCR-GAN (61.7%) and CR-HBNE (45.9%). Additionally, sensitivity analysis reveals that the LS-SLM technique achieves the highest sensitivity value of 96.5487%, outperforming LA by 14.2%. The LS-SLM also demonstrates superior specificity and recall, with values of 96.5478% and 96.5487%, respectively. The modularity performance is exceptional, with LS-SLM obtaining 95.6119%, significantly outpacing SLM, FGA, SBM, and LA. Furthermore, the LS-SLM technique excels in community detection time, completing the process in 38,652 ms, showcasing efficiency gains over existing techniques. The BTC analysis indicates that LS-SLM achieves a value of 94.6650%, demonstrating its proficiency in controlling information flow within the network.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-233851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种创新方法--LS-SLM(Local Search with Smart Local Moving)技术,用于提高基于社区检测和主题建模的文章推荐系统的效率。该方法使用从 "dp. v12.json "引文网络中提取的综合数据集进行了严格评估。本文介绍的实验结果清楚地表明,与卢万算法(LA)、随机块模型(SBM)、快速贪婪算法(FGA)和智能局部移动(SLM)等成熟算法相比,LS-SLM 技术的性能更加优越。评估指标包括准确度、精确度、特异性、召回率、F-Score、模块化、归一化互信息(NMI)、中心度(BTC)和群落检测时间。值得注意的是,LS-SLM 技术在所有指标上都优于现有解决方案。例如,拟议方法的准确率达到 96.32%,比 LA 高出 16%,比 SBM 高出 10.6%。精确度是衡量相关性的关键指标,达到 96.32%,比 GCR-GAN (61.7%)和 CR-HBNE (45.9%)有显著提高。此外,灵敏度分析表明,LS-SLM 技术的灵敏度最高,达到 96.5487%,比 LA 高出 14.2%。LS-SLM 的特异性和召回率也表现优异,分别为 96.5478% 和 96.5487%。模块化性能也非常出色,LS-SLM 的模块化率达到 95.6119%,大大超过 SLM、FGA、SBM 和 LA。此外,LS-SLM 技术在群落检测时间方面表现出色,仅用了 38652 毫秒就完成了检测过程,与现有技术相比效率大为提高。BTC分析表明,LS-SLM达到了94.6650%的值,证明了它在控制网络内信息流方面的能力。
Effective community detection with topic modeling in article recommender systems using LS-SLM and PCC-LDA
This paper introduces an innovative approach, the LS-SLM (Local Search with Smart Local Moving) technique, for enhancing the efficiency of article recommendation systems based on community detection and topic modeling. The methodology undergoes rigorous evaluation using a comprehensive dataset extracted from the “dblp. v12.json” citation network. Experimental results presented herein provide a clear depiction of the superior performance of the LS-SLM technique when compared to established algorithms, namely the Louvain Algorithm (LA), Stochastic Block Model (SBM), Fast Greedy Algorithm (FGA), and Smart Local Moving (SLM). The evaluation metrics include accuracy, precision, specificity, recall, F-Score, modularity, Normalized Mutual Information (NMI), betweenness centrality (BTC), and community detection time. Notably, the LS-SLM technique outperforms existing solutions across all metrics. For instance, the proposed methodology achieves an accuracy of 96.32%, surpassing LA by 16% and demonstrating a 10.6% improvement over SBM. Precision, a critical measure of relevance, stands at 96.32%, showcasing a significant advancement over GCR-GAN (61.7%) and CR-HBNE (45.9%). Additionally, sensitivity analysis reveals that the LS-SLM technique achieves the highest sensitivity value of 96.5487%, outperforming LA by 14.2%. The LS-SLM also demonstrates superior specificity and recall, with values of 96.5478% and 96.5487%, respectively. The modularity performance is exceptional, with LS-SLM obtaining 95.6119%, significantly outpacing SLM, FGA, SBM, and LA. Furthermore, the LS-SLM technique excels in community detection time, completing the process in 38,652 ms, showcasing efficiency gains over existing techniques. The BTC analysis indicates that LS-SLM achieves a value of 94.6650%, demonstrating its proficiency in controlling information flow within the network.