Ana Castillo-Páez, R. Llera‐Herrera, J. A. Cruz-Barraza
{"title":"墨西哥太平洋同域纤毛虫(Mycale (Carmia) cecilia)(多孔动物:Poecilosclerida)彩色形态型隐性物种的形态学和分子证据","authors":"Ana Castillo-Páez, R. Llera‐Herrera, J. A. Cruz-Barraza","doi":"10.3989/scimar.05339.082","DOIUrl":null,"url":null,"abstract":"Identifying cryptic species is pivotal for understanding marine biodiversity and optimizing strategies for its conservation. A robust understanding of poriferan diversity is a complex endeavour. It has also been extremely hampered by the high phenotypic plasticity and the limited number of diagnostic characters. Mycale (Carmia) cecilia has different body colours, even among individuals living together. We tested whether the colour variation could be due to polymorphism, phenotypic plasticity or cryptic speciation. Phylogenetic reconstructions of nuclear and mitochondrial loci were congruent. Individuals of different body colour did not cluster together and had high levels of genetic divergence. Furthermore, the green morphotype clustered in almost all reconstructions with Mycale (C.) phyllophila, as both showed higher gene similarity at the transcriptomic level (public transcriptome). Morphologically, the green individuals consistently showed discrepancies from the red ones. These results suggest that all individuals with the same body colour, either red or green, correspond to the same species, while individuals with different body colours probably belong to different species. These results reveal high levels of morphologic and genetic diversity, which could have important implications for what is known as M. (C.) cecilia and the Mycalidae systematics.","PeriodicalId":21600,"journal":{"name":"Scientia Marina","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological and molecular evidence of cryptic speciation in sympatric colour morphotypes of Mycale (Carmia) cecilia (Porifera: Poecilosclerida) from the Mexican Pacific\",\"authors\":\"Ana Castillo-Páez, R. Llera‐Herrera, J. A. Cruz-Barraza\",\"doi\":\"10.3989/scimar.05339.082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying cryptic species is pivotal for understanding marine biodiversity and optimizing strategies for its conservation. A robust understanding of poriferan diversity is a complex endeavour. It has also been extremely hampered by the high phenotypic plasticity and the limited number of diagnostic characters. Mycale (Carmia) cecilia has different body colours, even among individuals living together. We tested whether the colour variation could be due to polymorphism, phenotypic plasticity or cryptic speciation. Phylogenetic reconstructions of nuclear and mitochondrial loci were congruent. Individuals of different body colour did not cluster together and had high levels of genetic divergence. Furthermore, the green morphotype clustered in almost all reconstructions with Mycale (C.) phyllophila, as both showed higher gene similarity at the transcriptomic level (public transcriptome). Morphologically, the green individuals consistently showed discrepancies from the red ones. These results suggest that all individuals with the same body colour, either red or green, correspond to the same species, while individuals with different body colours probably belong to different species. These results reveal high levels of morphologic and genetic diversity, which could have important implications for what is known as M. (C.) cecilia and the Mycalidae systematics.\",\"PeriodicalId\":21600,\"journal\":{\"name\":\"Scientia Marina\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Marina\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3989/scimar.05339.082\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Marina","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3989/scimar.05339.082","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Morphological and molecular evidence of cryptic speciation in sympatric colour morphotypes of Mycale (Carmia) cecilia (Porifera: Poecilosclerida) from the Mexican Pacific
Identifying cryptic species is pivotal for understanding marine biodiversity and optimizing strategies for its conservation. A robust understanding of poriferan diversity is a complex endeavour. It has also been extremely hampered by the high phenotypic plasticity and the limited number of diagnostic characters. Mycale (Carmia) cecilia has different body colours, even among individuals living together. We tested whether the colour variation could be due to polymorphism, phenotypic plasticity or cryptic speciation. Phylogenetic reconstructions of nuclear and mitochondrial loci were congruent. Individuals of different body colour did not cluster together and had high levels of genetic divergence. Furthermore, the green morphotype clustered in almost all reconstructions with Mycale (C.) phyllophila, as both showed higher gene similarity at the transcriptomic level (public transcriptome). Morphologically, the green individuals consistently showed discrepancies from the red ones. These results suggest that all individuals with the same body colour, either red or green, correspond to the same species, while individuals with different body colours probably belong to different species. These results reveal high levels of morphologic and genetic diversity, which could have important implications for what is known as M. (C.) cecilia and the Mycalidae systematics.
期刊介绍:
Scientia Marina is the successor to Investigación Pesquera, a journal of marine sciences published since 1955 by the Institut de Ciències del Mar de Barcelona (CSIC). Scientia Marina is included in the Science Citation Index since 1998 and publishes original papers, reviews and comments concerning research in the following fields: Marine Biology and Ecology, Fisheries and Fisheries Ecology, Systematics, Faunistics and Marine Biogeography, Physical Oceanography, Chemical Oceanography, and Marine Geology. Emphasis is placed on articles of an interdisciplinary nature and of general interest.