{"title":"使用改进的 YOLOv5 模型检测圈养猪","authors":"Salam Jayachitra Devi, Juwar Doley, Vivek Kumar Gupta","doi":"10.3233/jifs-231032","DOIUrl":null,"url":null,"abstract":" Object detection has made significant strides in recent years, but it remains a challenging task to accurately and quickly identify and detect objects. While humans can easily recognize objects in images or videos regardless of their appearance, computers face difficulties in this task. Object detection plays a crucial role in computer vision and finds applications in various domains such as healthcare, security, agriculture, home automation and more. To address the challenges of object detection, several techniques have been developed including RCNN, Faster RCNN, YOLO and Single Shot Detector (SSD). In this paper, we propose a modified YOLOv5s architecture that aims to improve detection performance. Our modified architecture incorporates the C3Ghost module along with the SPP and SPPF modules in the YOLOv5s backbone network. We also utilize the Adam and Stochastic Gradient Descent (SGD) optimizers. The paper also provides an overview of three major versions of the YOLO object detection model: YOLOv3, YOLOv4 and YOLOv5. We discussed their respective performance analyses. For our evaluation, we collected a database of pig images from the ICAR-National Research Centre on Pig farm. We assessed the performance using four metrics such as Precision (P), Recall (R), F1-score and mAP @ 0.50. The computational results demonstrate that our method YOLOv5s architecture achieves a 0.0414 higher mAP while utilizing less memory space compared to the original YOLOv5s architecture. This research contributes to the advancement of object detection techniques and showcases the potential of our modified YOLOv5s architecture for improved performance in real world applications.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of an in-housed pig using modified YOLOv5 model\",\"authors\":\"Salam Jayachitra Devi, Juwar Doley, Vivek Kumar Gupta\",\"doi\":\"10.3233/jifs-231032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Object detection has made significant strides in recent years, but it remains a challenging task to accurately and quickly identify and detect objects. While humans can easily recognize objects in images or videos regardless of their appearance, computers face difficulties in this task. Object detection plays a crucial role in computer vision and finds applications in various domains such as healthcare, security, agriculture, home automation and more. To address the challenges of object detection, several techniques have been developed including RCNN, Faster RCNN, YOLO and Single Shot Detector (SSD). In this paper, we propose a modified YOLOv5s architecture that aims to improve detection performance. Our modified architecture incorporates the C3Ghost module along with the SPP and SPPF modules in the YOLOv5s backbone network. We also utilize the Adam and Stochastic Gradient Descent (SGD) optimizers. The paper also provides an overview of three major versions of the YOLO object detection model: YOLOv3, YOLOv4 and YOLOv5. We discussed their respective performance analyses. For our evaluation, we collected a database of pig images from the ICAR-National Research Centre on Pig farm. We assessed the performance using four metrics such as Precision (P), Recall (R), F1-score and mAP @ 0.50. The computational results demonstrate that our method YOLOv5s architecture achieves a 0.0414 higher mAP while utilizing less memory space compared to the original YOLOv5s architecture. This research contributes to the advancement of object detection techniques and showcases the potential of our modified YOLOv5s architecture for improved performance in real world applications.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-231032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-231032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of an in-housed pig using modified YOLOv5 model
Object detection has made significant strides in recent years, but it remains a challenging task to accurately and quickly identify and detect objects. While humans can easily recognize objects in images or videos regardless of their appearance, computers face difficulties in this task. Object detection plays a crucial role in computer vision and finds applications in various domains such as healthcare, security, agriculture, home automation and more. To address the challenges of object detection, several techniques have been developed including RCNN, Faster RCNN, YOLO and Single Shot Detector (SSD). In this paper, we propose a modified YOLOv5s architecture that aims to improve detection performance. Our modified architecture incorporates the C3Ghost module along with the SPP and SPPF modules in the YOLOv5s backbone network. We also utilize the Adam and Stochastic Gradient Descent (SGD) optimizers. The paper also provides an overview of three major versions of the YOLO object detection model: YOLOv3, YOLOv4 and YOLOv5. We discussed their respective performance analyses. For our evaluation, we collected a database of pig images from the ICAR-National Research Centre on Pig farm. We assessed the performance using four metrics such as Precision (P), Recall (R), F1-score and mAP @ 0.50. The computational results demonstrate that our method YOLOv5s architecture achieves a 0.0414 higher mAP while utilizing less memory space compared to the original YOLOv5s architecture. This research contributes to the advancement of object detection techniques and showcases the potential of our modified YOLOv5s architecture for improved performance in real world applications.