Girish Hariharan, Meghana K. Navada, Jeevan Brahmavar, Ganesha Aroor
{"title":"基于机器学习的预测模型来评估作为富含二氧化硅纳米颗粒的生物润滑剂的环保油的流变动力学特性","authors":"Girish Hariharan, Meghana K. Navada, Jeevan Brahmavar, Ganesha Aroor","doi":"10.3390/lubricants12030092","DOIUrl":null,"url":null,"abstract":"Efficient machinery operation relies on the performance of high-quality lubricants. Currently, mineral oils of different grades are widely employed for lubricating machine components, but their environmental impact is a concern. Biolubricants are potential alternatives to mineral oils due to environmental factors. The present study focuses on assessing the rheological characteristics of SiO2 nanoparticle (NP)-enhanced ecofriendly biolubricants for near zero and high-temperature conditions. Pure neem oil, pure castor oil and a 50:50 blend of both oils were considered as the base oils. Nanobiolubricants with enhanced dispersion stability were prepared for varied concentrations of NPs using an ultrasonification method. Viscosity analysis was conducted using an MCR-92 rheometer, employing the Herschel Bulkley model to precisely characterize the viscosity behavior of bio-oils. Due to the fluid–solid interaction between SiO2 NPs and bio-oils, a crossover trend was observed in the flow curves generated for different base oils enriched with SiO2 NPs. For neem oil, a significant increase in viscosity was noted for 0.2 wt% of NPs. Using the multilayer perceptron (MLP) algorithm, an artificial neural network (ANN) model was developed to accurately predict the viscosity variations in nanobiolubricants. The accuracy of the predicted values was affirmed through experimental investigations at the considered nanoSiO2 weight concentrations.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Predictive Model to Assess Rheological Dynamics of Eco-Friendly Oils as Biolubricants Enriched with SiO2 Nanoparticles\",\"authors\":\"Girish Hariharan, Meghana K. Navada, Jeevan Brahmavar, Ganesha Aroor\",\"doi\":\"10.3390/lubricants12030092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient machinery operation relies on the performance of high-quality lubricants. Currently, mineral oils of different grades are widely employed for lubricating machine components, but their environmental impact is a concern. Biolubricants are potential alternatives to mineral oils due to environmental factors. The present study focuses on assessing the rheological characteristics of SiO2 nanoparticle (NP)-enhanced ecofriendly biolubricants for near zero and high-temperature conditions. Pure neem oil, pure castor oil and a 50:50 blend of both oils were considered as the base oils. Nanobiolubricants with enhanced dispersion stability were prepared for varied concentrations of NPs using an ultrasonification method. Viscosity analysis was conducted using an MCR-92 rheometer, employing the Herschel Bulkley model to precisely characterize the viscosity behavior of bio-oils. Due to the fluid–solid interaction between SiO2 NPs and bio-oils, a crossover trend was observed in the flow curves generated for different base oils enriched with SiO2 NPs. For neem oil, a significant increase in viscosity was noted for 0.2 wt% of NPs. Using the multilayer perceptron (MLP) algorithm, an artificial neural network (ANN) model was developed to accurately predict the viscosity variations in nanobiolubricants. The accuracy of the predicted values was affirmed through experimental investigations at the considered nanoSiO2 weight concentrations.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12030092\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030092","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Machine Learning-Based Predictive Model to Assess Rheological Dynamics of Eco-Friendly Oils as Biolubricants Enriched with SiO2 Nanoparticles
Efficient machinery operation relies on the performance of high-quality lubricants. Currently, mineral oils of different grades are widely employed for lubricating machine components, but their environmental impact is a concern. Biolubricants are potential alternatives to mineral oils due to environmental factors. The present study focuses on assessing the rheological characteristics of SiO2 nanoparticle (NP)-enhanced ecofriendly biolubricants for near zero and high-temperature conditions. Pure neem oil, pure castor oil and a 50:50 blend of both oils were considered as the base oils. Nanobiolubricants with enhanced dispersion stability were prepared for varied concentrations of NPs using an ultrasonification method. Viscosity analysis was conducted using an MCR-92 rheometer, employing the Herschel Bulkley model to precisely characterize the viscosity behavior of bio-oils. Due to the fluid–solid interaction between SiO2 NPs and bio-oils, a crossover trend was observed in the flow curves generated for different base oils enriched with SiO2 NPs. For neem oil, a significant increase in viscosity was noted for 0.2 wt% of NPs. Using the multilayer perceptron (MLP) algorithm, an artificial neural network (ANN) model was developed to accurately predict the viscosity variations in nanobiolubricants. The accuracy of the predicted values was affirmed through experimental investigations at the considered nanoSiO2 weight concentrations.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding