应用人工智能估算大豆产量

Wesley Prado Leão dos Santos, Mariana Bonini Silva, Alfredo Bonini Neto, C. Bonini, Adônis Moreira
{"title":"应用人工智能估算大豆产量","authors":"Wesley Prado Leão dos Santos, Mariana Bonini Silva, Alfredo Bonini Neto, C. Bonini, Adônis Moreira","doi":"10.18011/bioeng.2024.v18.1211","DOIUrl":null,"url":null,"abstract":"The application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.","PeriodicalId":32292,"journal":{"name":"Revista Brasileira de Engenharia de Biossistemas","volume":"77 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence applied to estimate soybean yield\",\"authors\":\"Wesley Prado Leão dos Santos, Mariana Bonini Silva, Alfredo Bonini Neto, C. Bonini, Adônis Moreira\",\"doi\":\"10.18011/bioeng.2024.v18.1211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.\",\"PeriodicalId\":32292,\"journal\":{\"name\":\"Revista Brasileira de Engenharia de Biossistemas\",\"volume\":\"77 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Engenharia de Biossistemas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18011/bioeng.2024.v18.1211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Engenharia de Biossistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18011/bioeng.2024.v18.1211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应用数学模型,利用生物和非生物因素有效使用肥料,以获得最大的经济生产率,是使大豆(Glycine max (L.) Merr.)谷物产量成本最小化的重要工具。从这个意义上讲,使用人工神经网络(ANN)是涉及优化研究的重要工具。本研究旨在通过考虑两个生长季节和人工神经网络 (ANN) 作为植物形态和营养参数的函数,估算巴西巴拉那州 Luiziana 的大豆产量。结果表明,该网络训练有素,误差范围约为 10-5,因此可作为估算大豆数据的工具。在模型验证和网络测试阶段,即不属于训练(验证)的数据,误差平均为 10-3。这些结果表明,我们的方法足以优化所研究地区的大豆产量估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence applied to estimate soybean yield
The application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
7 weeks
期刊最新文献
Gypsum-based composites reinforced with bamboo particles Bean yield estimation using unmanned aerial vehicle imagery Cotton responses to potassium fertilization in Northeastern Brazil Soil compaction in progressive agricultural tractor treads Genetic resistance and silicon in the control of stem rot in Capsicum spp.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1