设计和优化用于脊柱姿势测量的可穿戴欠动机构

Ming-Chang Hsu, Hsuan-Yu Chen, Christina Soong, Ting-Jen Yeh
{"title":"设计和优化用于脊柱姿势测量的可穿戴欠动机构","authors":"Ming-Chang Hsu, Hsuan-Yu Chen, Christina Soong, Ting-Jen Yeh","doi":"10.1115/1.4065075","DOIUrl":null,"url":null,"abstract":"\n This paper proposes a novel wearable device to monitor and record the posture and alignment of spine. The proposed device adopts an underactuated mechanism design which allows it to adapt to the multiple-degrees-of-freedom spinal posture with minimum weight and complexity. To ensure the validity of measurement and comfort of wearing, the mechanism parameters are determined firstly by considering a special posture then are fine-tuned using an optimization algorithm so that uniform contact forces for several selected spinal postures can be achieved. Experiments demonstrate that the device can automatically maintain contact with the wearer's back and offer real-time spinal posture and alignment data for medical diagnosis and treatment.","PeriodicalId":508172,"journal":{"name":"Journal of Mechanisms and Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of a Wearable Under-actuated Mechanism for Spinal Posture Measurement\",\"authors\":\"Ming-Chang Hsu, Hsuan-Yu Chen, Christina Soong, Ting-Jen Yeh\",\"doi\":\"10.1115/1.4065075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper proposes a novel wearable device to monitor and record the posture and alignment of spine. The proposed device adopts an underactuated mechanism design which allows it to adapt to the multiple-degrees-of-freedom spinal posture with minimum weight and complexity. To ensure the validity of measurement and comfort of wearing, the mechanism parameters are determined firstly by considering a special posture then are fine-tuned using an optimization algorithm so that uniform contact forces for several selected spinal postures can be achieved. Experiments demonstrate that the device can automatically maintain contact with the wearer's back and offer real-time spinal posture and alignment data for medical diagnosis and treatment.\",\"PeriodicalId\":508172,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种监测和记录脊柱姿势和排列的新型可穿戴设备。该装置采用欠驱动机构设计,能以最小的重量和复杂度适应多自由度脊柱姿势。为确保测量的有效性和佩戴的舒适性,首先通过考虑一种特殊的姿势来确定机构参数,然后使用优化算法对其进行微调,从而实现多个选定脊柱姿势的均匀接触力。实验证明,该装置能自动与佩戴者的背部保持接触,并为医疗诊断和治疗提供实时的脊柱姿势和排列数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Optimization of a Wearable Under-actuated Mechanism for Spinal Posture Measurement
This paper proposes a novel wearable device to monitor and record the posture and alignment of spine. The proposed device adopts an underactuated mechanism design which allows it to adapt to the multiple-degrees-of-freedom spinal posture with minimum weight and complexity. To ensure the validity of measurement and comfort of wearing, the mechanism parameters are determined firstly by considering a special posture then are fine-tuned using an optimization algorithm so that uniform contact forces for several selected spinal postures can be achieved. Experiments demonstrate that the device can automatically maintain contact with the wearer's back and offer real-time spinal posture and alignment data for medical diagnosis and treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Analysis of a Novel Bio-syncretic Parallel Hip Exoskeleton Based on Torque Requirements A Novel Head-following Algorithm for Multi-Joint Articulated Driven Continuum Robots Development of a 6 degrees- of-freedom hybrid interface intended for teleoperated robotic cervical spine surgery Improving Terrain Adaptability and Compliance in Closed-Chain Leg: Design, Control, and Testing Errata: Static Stability of Planar Contacting Systems: Analytical Treatment in Euclidean Space. ASME J. Mech. Rob., 16(8): p. 081009; DOI:10.1115/1.4064065
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1