用于预测 COVID-19 患者皮质类固醇治疗必要性的机器学习模型:比较研究

Mujiba Shaima, Norun Nabi, Md Nasir Uddin Rana, Ahmed Ali Linkon, Badruddowza, Md Shohail Uddin Sarker, Nishat Anjum, Hammed Esa
{"title":"用于预测 COVID-19 患者皮质类固醇治疗必要性的机器学习模型:比较研究","authors":"Mujiba Shaima, Norun Nabi, Md Nasir Uddin Rana, Ahmed Ali Linkon, Badruddowza, Md Shohail Uddin Sarker, Nishat Anjum, Hammed Esa","doi":"10.32996/jcsts.2024.6.1.25","DOIUrl":null,"url":null,"abstract":"This study analyzes machine learning algorithms to predict the need for corticosteroid (CS) therapy in COVID-19 patients based on initial assessments. Using data from 1861 COVID-19 patients, parameters like blood tests and pulmonary function tests were examined. Decision Tree and XGBoost emerged as top performers, achieving accuracy rates of 80.68% and 83.44% respectively. Multilayer Perceptron and AdaBoost also showed competitive performance. These findings highlight the potential of AI in guiding CS therapy decisions, with Decision Tree and XGBoost standing out as effective tools for patient identification. This research offers valuable insights for personalized medicine in infectious disease management.","PeriodicalId":509154,"journal":{"name":"Journal of Computer Science and Technology Studies","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Models for Predicting Corticosteroid Therapy Necessity in COVID-19 Patients: A Comparative Study\",\"authors\":\"Mujiba Shaima, Norun Nabi, Md Nasir Uddin Rana, Ahmed Ali Linkon, Badruddowza, Md Shohail Uddin Sarker, Nishat Anjum, Hammed Esa\",\"doi\":\"10.32996/jcsts.2024.6.1.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study analyzes machine learning algorithms to predict the need for corticosteroid (CS) therapy in COVID-19 patients based on initial assessments. Using data from 1861 COVID-19 patients, parameters like blood tests and pulmonary function tests were examined. Decision Tree and XGBoost emerged as top performers, achieving accuracy rates of 80.68% and 83.44% respectively. Multilayer Perceptron and AdaBoost also showed competitive performance. These findings highlight the potential of AI in guiding CS therapy decisions, with Decision Tree and XGBoost standing out as effective tools for patient identification. This research offers valuable insights for personalized medicine in infectious disease management.\",\"PeriodicalId\":509154,\"journal\":{\"name\":\"Journal of Computer Science and Technology Studies\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32996/jcsts.2024.6.1.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jcsts.2024.6.1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究分析了机器学习算法,以根据初步评估预测 COVID-19 患者对皮质类固醇(CS)治疗的需求。研究使用了 1861 名 COVID-19 患者的数据,对血液检测和肺功能检测等参数进行了检查。决策树和 XGBoost 表现最佳,准确率分别达到 80.68% 和 83.44%。多层感知器和 AdaBoost 的表现也很有竞争力。这些发现凸显了人工智能在指导 CS 治疗决策方面的潜力,其中决策树和 XGBoost 是识别患者的有效工具。这项研究为传染病管理中的个性化医疗提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Models for Predicting Corticosteroid Therapy Necessity in COVID-19 Patients: A Comparative Study
This study analyzes machine learning algorithms to predict the need for corticosteroid (CS) therapy in COVID-19 patients based on initial assessments. Using data from 1861 COVID-19 patients, parameters like blood tests and pulmonary function tests were examined. Decision Tree and XGBoost emerged as top performers, achieving accuracy rates of 80.68% and 83.44% respectively. Multilayer Perceptron and AdaBoost also showed competitive performance. These findings highlight the potential of AI in guiding CS therapy decisions, with Decision Tree and XGBoost standing out as effective tools for patient identification. This research offers valuable insights for personalized medicine in infectious disease management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research and Innovation of a Community Intelligent Pension Service System: Taking Longhua District, Shenzhen, China, as an Example AI and Machine Learning for Optimal Crop Yield Optimization in the USA Improving Cardiovascular Disease Prediction through Comparative Analysis of Machine Learning Models Fuzzy Logic Empowered NetWatch: Revolutionizing Aquaculture with IoT-based Intelligent Monitoring and Management in Bangladesh AI-Based Customer Churn Prediction Model for Business Markets in the USA: Exploring the Use of AI and Machine Learning Technologies in Preventing Customer Churn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1