桩间距可变导致的复杂上部结构-地基-基土相互作用系统性能分析

Miao He
{"title":"桩间距可变导致的复杂上部结构-地基-基土相互作用系统性能分析","authors":"Miao He","doi":"10.1007/s44150-024-00109-z","DOIUrl":null,"url":null,"abstract":"<div><p>Reasonably evaluating the behavior of building structures gives rise to concerns associated with the design method considering interaction between superstructure and foundation. The pile plays a dominant role in the foundation, and varying pile spacing is an effective method for optimizing the pile group foundation. However, the interaction between the superstructure, foundation and subsoil is a complex physical process involving multiple objects. Quantitative assessment of the effects of varying pile spacing on the entire interaction system remains challenging. This study was aimed to accurately assess the effect of different pile spacing on the internal force redistribution of complex superstructures. Based on a case study of a high-rise building with a frame-core tube structure and pile-raft foundation, four cases with different pile spacing were considered. Special attention was given to the relationships of the load-transfer effects between the frame column and the core tube. Subsequently, using a series of numerical simulations, the whole construction process was modeled and calculated. The results confirmed that different pile spacings could affect the performance of the foundation-subsoil, and increasing the pile spacing outside the core tube is an economical and feasible method, which is more suitable for the mechanical characteristics of the frame-core tube structure.</p></div>","PeriodicalId":100117,"journal":{"name":"Architecture, Structures and Construction","volume":"4 1","pages":"71 - 90"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of a complex superstructure-foundation-subsoil interaction system due to variable pile spacing\",\"authors\":\"Miao He\",\"doi\":\"10.1007/s44150-024-00109-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reasonably evaluating the behavior of building structures gives rise to concerns associated with the design method considering interaction between superstructure and foundation. The pile plays a dominant role in the foundation, and varying pile spacing is an effective method for optimizing the pile group foundation. However, the interaction between the superstructure, foundation and subsoil is a complex physical process involving multiple objects. Quantitative assessment of the effects of varying pile spacing on the entire interaction system remains challenging. This study was aimed to accurately assess the effect of different pile spacing on the internal force redistribution of complex superstructures. Based on a case study of a high-rise building with a frame-core tube structure and pile-raft foundation, four cases with different pile spacing were considered. Special attention was given to the relationships of the load-transfer effects between the frame column and the core tube. Subsequently, using a series of numerical simulations, the whole construction process was modeled and calculated. The results confirmed that different pile spacings could affect the performance of the foundation-subsoil, and increasing the pile spacing outside the core tube is an economical and feasible method, which is more suitable for the mechanical characteristics of the frame-core tube structure.</p></div>\",\"PeriodicalId\":100117,\"journal\":{\"name\":\"Architecture, Structures and Construction\",\"volume\":\"4 1\",\"pages\":\"71 - 90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architecture, Structures and Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44150-024-00109-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architecture, Structures and Construction","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44150-024-00109-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对建筑结构行为进行合理评估,需要考虑上部结构与地基之间相互作用的设计方法。桩在地基中起主导作用,改变桩间距是优化桩群地基的有效方法。然而,上部结构、地基和底土之间的相互作用是一个复杂的物理过程,涉及多个物体。定量评估改变桩间距对整个相互作用系统的影响仍然具有挑战性。本研究旨在准确评估不同桩间距对复杂上部结构内力重新分布的影响。在对一栋采用框架-核心筒结构和桩-筏基础的高层建筑进行案例研究的基础上,考虑了四种不同桩间距的情况。研究特别关注了框架柱与核心筒之间的荷载传递效应关系。随后,通过一系列数值模拟,对整个施工过程进行了建模和计算。结果证实,不同的桩间距会影响地基-底土的性能,而加大核心筒外的桩间距是一种经济可行的方法,更适合框架-核心筒结构的力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of a complex superstructure-foundation-subsoil interaction system due to variable pile spacing

Reasonably evaluating the behavior of building structures gives rise to concerns associated with the design method considering interaction between superstructure and foundation. The pile plays a dominant role in the foundation, and varying pile spacing is an effective method for optimizing the pile group foundation. However, the interaction between the superstructure, foundation and subsoil is a complex physical process involving multiple objects. Quantitative assessment of the effects of varying pile spacing on the entire interaction system remains challenging. This study was aimed to accurately assess the effect of different pile spacing on the internal force redistribution of complex superstructures. Based on a case study of a high-rise building with a frame-core tube structure and pile-raft foundation, four cases with different pile spacing were considered. Special attention was given to the relationships of the load-transfer effects between the frame column and the core tube. Subsequently, using a series of numerical simulations, the whole construction process was modeled and calculated. The results confirmed that different pile spacings could affect the performance of the foundation-subsoil, and increasing the pile spacing outside the core tube is an economical and feasible method, which is more suitable for the mechanical characteristics of the frame-core tube structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of natural fibre pultruded profiles in diverse lightweight structures and architectural scenarios Mass housing in transition: innovability in large-scale housing complexes A multi-criteria decision support framework for designing seismic and thermal resilient facades Flexural behavior of natural fiber-reinforced foamed concrete beams From decay analysis to conservation plan of post-Vatican II religious architecture: Research on the Church of the Holy Family by Paolo Portoghesi in Italy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1