{"title":"模拟多种等离子体情况下的极端紫外线辐射和锂等离子体的转换效率","authors":"Xiangdong Li, F. Rosmej, Zhanbin Chen","doi":"10.3390/atoms12030016","DOIUrl":null,"url":null,"abstract":"Based on the detailed term accounting approach, the relationship between extreme ultraviolet conversion efficiency and plasma conditions, which range from 5 to 200 eV for plasma temperature and from 4.63 × 1017 to 4.63 × 1022 cm−3 for plasma density, is studied for lithium plasmas through spectral simulations involving very extended atomic configurations, including a benchmark set of autoionizing states. The theoretical limit of the EUV conversion efficiency and its dependence on sustained plasma time are given for different plasma densities. The present study provides the necessary understanding of EUV formation from the perspective of atomic physics and also provides useful knowledge for improving EUV conversion efficiency with different technologies.","PeriodicalId":502621,"journal":{"name":"Atoms","volume":"14 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Extreme Ultraviolet Radiation and Conversion Efficiency of Lithium Plasma in a Wide Range of Plasma Situations\",\"authors\":\"Xiangdong Li, F. Rosmej, Zhanbin Chen\",\"doi\":\"10.3390/atoms12030016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the detailed term accounting approach, the relationship between extreme ultraviolet conversion efficiency and plasma conditions, which range from 5 to 200 eV for plasma temperature and from 4.63 × 1017 to 4.63 × 1022 cm−3 for plasma density, is studied for lithium plasmas through spectral simulations involving very extended atomic configurations, including a benchmark set of autoionizing states. The theoretical limit of the EUV conversion efficiency and its dependence on sustained plasma time are given for different plasma densities. The present study provides the necessary understanding of EUV formation from the perspective of atomic physics and also provides useful knowledge for improving EUV conversion efficiency with different technologies.\",\"PeriodicalId\":502621,\"journal\":{\"name\":\"Atoms\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms12030016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms12030016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of Extreme Ultraviolet Radiation and Conversion Efficiency of Lithium Plasma in a Wide Range of Plasma Situations
Based on the detailed term accounting approach, the relationship between extreme ultraviolet conversion efficiency and plasma conditions, which range from 5 to 200 eV for plasma temperature and from 4.63 × 1017 to 4.63 × 1022 cm−3 for plasma density, is studied for lithium plasmas through spectral simulations involving very extended atomic configurations, including a benchmark set of autoionizing states. The theoretical limit of the EUV conversion efficiency and its dependence on sustained plasma time are given for different plasma densities. The present study provides the necessary understanding of EUV formation from the perspective of atomic physics and also provides useful knowledge for improving EUV conversion efficiency with different technologies.