{"title":"针对高分辨率光学斑点场的优化斯托克斯成像,第三部分:利用优化数据表示对偏振态分布进行拓扑分析","authors":"Jonathan Staes, Julien Fade","doi":"10.1364/josaa.516717","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"26 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Stokes imaging for highly resolved optical speckle fields, part III: Topological analysis of polarimetric states distributions with optimized data representations\",\"authors\":\"Jonathan Staes, Julien Fade\",\"doi\":\"10.1364/josaa.516717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":501620,\"journal\":{\"name\":\"Journal of the Optical Society of America A\",\"volume\":\"26 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josaa.516717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.516717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized Stokes imaging for highly resolved optical speckle fields, part III: Topological analysis of polarimetric states distributions with optimized data representations