{"title":"SECC 圆柱杯深拉工艺中断裂高度的优化与建模","authors":"Quy-Huy Trieu, The-Thanh Luyen, Duc-Toan Nguyen","doi":"10.36897/jme/185476","DOIUrl":null,"url":null,"abstract":"Deep drawing processes play a pivotal role in the manufacturing of sheet and shell products, making it a widely adopted method. This research employs numerical simulations to investigate the impact of various process parameters on the fracture height of cylindrical cups made from SECC (Steel Electrogalvanized Commercial Cold rolled) material. Specifically, it examines parameters such as blank holder force (BHF), punch corner radius (Rp), die corner radius (Rd), and punch-die clearance (Wc). The study extends to optimizing fracture height, offering a solution to this challenge. Subsequently, the selected parameters are validated through experimental deep drawing of cylindrical cups, resulting in a minimal deviation of 1.55% between simulation and experiment outcomes. A precise mathematical equation is developed to estimate fracture height under diverse machining conditions, with a maximum deviation of 4.52% observed between the mathematical model and simulation. These findings represent a substantial advancement in deep drawing processes technology, particularly in reducing error rates during the production of cylindrical cups .","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"40 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and Modelling of Fracture Height in SECC Cylindrical Cup Deep Drawing Processes\",\"authors\":\"Quy-Huy Trieu, The-Thanh Luyen, Duc-Toan Nguyen\",\"doi\":\"10.36897/jme/185476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep drawing processes play a pivotal role in the manufacturing of sheet and shell products, making it a widely adopted method. This research employs numerical simulations to investigate the impact of various process parameters on the fracture height of cylindrical cups made from SECC (Steel Electrogalvanized Commercial Cold rolled) material. Specifically, it examines parameters such as blank holder force (BHF), punch corner radius (Rp), die corner radius (Rd), and punch-die clearance (Wc). The study extends to optimizing fracture height, offering a solution to this challenge. Subsequently, the selected parameters are validated through experimental deep drawing of cylindrical cups, resulting in a minimal deviation of 1.55% between simulation and experiment outcomes. A precise mathematical equation is developed to estimate fracture height under diverse machining conditions, with a maximum deviation of 4.52% observed between the mathematical model and simulation. These findings represent a substantial advancement in deep drawing processes technology, particularly in reducing error rates during the production of cylindrical cups .\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":\"40 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/185476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/185476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Optimization and Modelling of Fracture Height in SECC Cylindrical Cup Deep Drawing Processes
Deep drawing processes play a pivotal role in the manufacturing of sheet and shell products, making it a widely adopted method. This research employs numerical simulations to investigate the impact of various process parameters on the fracture height of cylindrical cups made from SECC (Steel Electrogalvanized Commercial Cold rolled) material. Specifically, it examines parameters such as blank holder force (BHF), punch corner radius (Rp), die corner radius (Rd), and punch-die clearance (Wc). The study extends to optimizing fracture height, offering a solution to this challenge. Subsequently, the selected parameters are validated through experimental deep drawing of cylindrical cups, resulting in a minimal deviation of 1.55% between simulation and experiment outcomes. A precise mathematical equation is developed to estimate fracture height under diverse machining conditions, with a maximum deviation of 4.52% observed between the mathematical model and simulation. These findings represent a substantial advancement in deep drawing processes technology, particularly in reducing error rates during the production of cylindrical cups .
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.