发酵模式对间歇式生物反应器处理有机废物效率的影响

IF 1.4 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Archives of Environmental Protection Pub Date : 2024-03-08 DOI:10.24425/aep.2024.149434
V. Hovorukha
{"title":"发酵模式对间歇式生物反应器处理有机废物效率的影响","authors":"V. Hovorukha","doi":"10.24425/aep.2024.149434","DOIUrl":null,"url":null,"abstract":"The amount of solid organic waste is constantly growing. This is caused by the growth of industrial and agricultural capacities, and the inefficiency of existing waste processing technologies. Biotechnologies can provide effective environmentally friendly solutions for waste treatment. Therefore, the goal of our work was to compare the efficiency of strictly anaerobic fermentation of multi-component solid organic waste with hydrogen synthesis and waste treatment with pulsed air access in batch bioreactors.During fermentation, the following parameters were controlled: pH, redox potential (Eh), concentration of dissolved organics, and the content of H2, O2, and CO2 in the gas phase. The efficiency was evaluated via the process duration, calculation of the ratio of the initial and final weight of waste (Кd), and the yield of molecular hydrogen. Obtained results revealed high efficiency of organic waste degradation in both variants. The weight of waste 83-fold and 86-fold decreased, respectively. The time required for fermentation in strictly anaerobic conditions was 4 days, whereas 7 days were required for the mode with pulsed air access. The first variant provided a 2.8-fold higher hydrogen yield (54±4,1 L/kg of waste), and the second one provided a decrease in the concentration of dissolved organic compounds in the fermentation fluid. Fermentation is the effective approach for accelerated degradation of solid organic waste. Strictly anaerobic fermentation appeared to be useful in the need to accelerate the process. The mode with the pulsed air access can provide not only degradation of solid waste but also purification of the fermentation fluid.","PeriodicalId":48950,"journal":{"name":"Archives of Environmental Protection","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of fermentation modes on the efficiency of organic waste treatment in batch bioreactors\",\"authors\":\"V. Hovorukha\",\"doi\":\"10.24425/aep.2024.149434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of solid organic waste is constantly growing. This is caused by the growth of industrial and agricultural capacities, and the inefficiency of existing waste processing technologies. Biotechnologies can provide effective environmentally friendly solutions for waste treatment. Therefore, the goal of our work was to compare the efficiency of strictly anaerobic fermentation of multi-component solid organic waste with hydrogen synthesis and waste treatment with pulsed air access in batch bioreactors.During fermentation, the following parameters were controlled: pH, redox potential (Eh), concentration of dissolved organics, and the content of H2, O2, and CO2 in the gas phase. The efficiency was evaluated via the process duration, calculation of the ratio of the initial and final weight of waste (Кd), and the yield of molecular hydrogen. Obtained results revealed high efficiency of organic waste degradation in both variants. The weight of waste 83-fold and 86-fold decreased, respectively. The time required for fermentation in strictly anaerobic conditions was 4 days, whereas 7 days were required for the mode with pulsed air access. The first variant provided a 2.8-fold higher hydrogen yield (54±4,1 L/kg of waste), and the second one provided a decrease in the concentration of dissolved organic compounds in the fermentation fluid. Fermentation is the effective approach for accelerated degradation of solid organic waste. Strictly anaerobic fermentation appeared to be useful in the need to accelerate the process. The mode with the pulsed air access can provide not only degradation of solid waste but also purification of the fermentation fluid.\",\"PeriodicalId\":48950,\"journal\":{\"name\":\"Archives of Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.24425/aep.2024.149434\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.24425/aep.2024.149434","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

固体有机废物的数量在不断增长。这是由于工业和农业生产能力的增长以及现有废物处理技术效率低下造成的。生物技术可以为废物处理提供有效的环保解决方案。因此,我们的工作目标是比较多组分固体有机废物的严格厌氧发酵与氢气合成的效率,以及批量生物反应器中脉冲空气接入的废物处理效率。在发酵过程中,我们控制了以下参数:pH 值、氧化还原电位(Eh)、溶解有机物的浓度,以及气相中 H2、O2 和 CO2 的含量。效率通过过程持续时间、废物初始重量与最终重量之比(Кd)的计算以及分子氢的产量进行评估。结果表明,两种变体都能高效降解有机废物。废物重量分别减少了 83 倍和 86 倍。严格厌氧条件下的发酵时间为 4 天,而脉冲通气模式则需要 7 天。第一种变体的产氢量提高了 2.8 倍(54±4.1 升/千克废物),第二种变体降低了发酵液中溶解有机化合物的浓度。发酵是加速降解固体有机废物的有效方法。严格意义上的厌氧发酵似乎对加速这一过程很有帮助。脉冲空气接入模式不仅能降解固体废物,还能净化发酵液。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of fermentation modes on the efficiency of organic waste treatment in batch bioreactors
The amount of solid organic waste is constantly growing. This is caused by the growth of industrial and agricultural capacities, and the inefficiency of existing waste processing technologies. Biotechnologies can provide effective environmentally friendly solutions for waste treatment. Therefore, the goal of our work was to compare the efficiency of strictly anaerobic fermentation of multi-component solid organic waste with hydrogen synthesis and waste treatment with pulsed air access in batch bioreactors.During fermentation, the following parameters were controlled: pH, redox potential (Eh), concentration of dissolved organics, and the content of H2, O2, and CO2 in the gas phase. The efficiency was evaluated via the process duration, calculation of the ratio of the initial and final weight of waste (Кd), and the yield of molecular hydrogen. Obtained results revealed high efficiency of organic waste degradation in both variants. The weight of waste 83-fold and 86-fold decreased, respectively. The time required for fermentation in strictly anaerobic conditions was 4 days, whereas 7 days were required for the mode with pulsed air access. The first variant provided a 2.8-fold higher hydrogen yield (54±4,1 L/kg of waste), and the second one provided a decrease in the concentration of dissolved organic compounds in the fermentation fluid. Fermentation is the effective approach for accelerated degradation of solid organic waste. Strictly anaerobic fermentation appeared to be useful in the need to accelerate the process. The mode with the pulsed air access can provide not only degradation of solid waste but also purification of the fermentation fluid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Environmental Protection
Archives of Environmental Protection ENVIRONMENTAL SCIENCES-
CiteScore
2.70
自引率
26.70%
发文量
0
期刊介绍: Archives of Environmental Protection is the oldest Polish scientific journal of international scope that publishes articles on engineering and environmental protection. The quarterly has been published by the Institute of Environmental Engineering, Polish Academy of Sciences since 1975. The journal has served as a forum for the exchange of views and ideas among scientists. It has become part of scientific life in Poland and abroad. The quarterly publishes the results of research and scientific inquiries by best specialists hereby becoming an important pillar of science. The journal facilitates better understanding of environmental risks to humans and ecosystems and it also shows the methods for their analysis as well as trends in the search of effective solutions to minimize these risks.
期刊最新文献
The effect of fermentation modes on the efficiency of organic waste treatment in batch bioreactors Numerical model for simulating the hydraulic parameters of the aeration system ensuring equal oxygenation of the compost heap The trend of changes in soil organic carbon content in Poland over recent years Bibliometric and visual analysis of heavy metal health risk assessment: development, hotspots and trends Analysis of the feasibility of using biopolymers of different viscosities as immobilization carriers for laccase in synthetic dye removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1