用电力信息增强情境,实现智能环境中的绿色情境感知

IF 2.4 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Frontiers in Computer Science Pub Date : 2024-03-07 DOI:10.3389/fcomp.2024.1365500
U. Mahmud, Shariq Hussain
{"title":"用电力信息增强情境,实现智能环境中的绿色情境感知","authors":"U. Mahmud, Shariq Hussain","doi":"10.3389/fcomp.2024.1365500","DOIUrl":null,"url":null,"abstract":"The increase in the use of smart devices has led to the realization of the Internet of Everything (IoE). The heart of an IoE environment is a Context-Aware System that facilitates service discovery, delivery, and adaptation based on context classification. The context has been defined in a domain-dependent way, traditionally. The classical models of context have been focused on rich context and lack Cost of Context (CoC) that can be used for decision support. The authors present a philosophy-inspired mathematical model of context that includes confidence in activity classification of context, the actions performed, and the power information. Since a single recurring activity can lead to distinct actions performed at different times, it is better to record the actions. The power information includes the power consumed in the complete context processing and is a quality attribute of the context. Power consumption is a useful metric as CoC and is suitable for power-constrained context awareness. To demonstrate the effectiveness of the proposed work, example contexts are described, and the context model is presented mathematically in this study. The context is aggregated with power information, and actions and confidence on the classification outcome lead to the concept of situational context. The results show that the context gathered through sensor data and deduced through remote services can be made more rich with CoC parameters.","PeriodicalId":52823,"journal":{"name":"Frontiers in Computer Science","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmenting context with power information for green context-awareness in smart environments\",\"authors\":\"U. Mahmud, Shariq Hussain\",\"doi\":\"10.3389/fcomp.2024.1365500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in the use of smart devices has led to the realization of the Internet of Everything (IoE). The heart of an IoE environment is a Context-Aware System that facilitates service discovery, delivery, and adaptation based on context classification. The context has been defined in a domain-dependent way, traditionally. The classical models of context have been focused on rich context and lack Cost of Context (CoC) that can be used for decision support. The authors present a philosophy-inspired mathematical model of context that includes confidence in activity classification of context, the actions performed, and the power information. Since a single recurring activity can lead to distinct actions performed at different times, it is better to record the actions. The power information includes the power consumed in the complete context processing and is a quality attribute of the context. Power consumption is a useful metric as CoC and is suitable for power-constrained context awareness. To demonstrate the effectiveness of the proposed work, example contexts are described, and the context model is presented mathematically in this study. The context is aggregated with power information, and actions and confidence on the classification outcome lead to the concept of situational context. The results show that the context gathered through sensor data and deduced through remote services can be made more rich with CoC parameters.\",\"PeriodicalId\":52823,\"journal\":{\"name\":\"Frontiers in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcomp.2024.1365500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcomp.2024.1365500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

智能设备使用的增加导致了万物互联(IoE)的实现。万物互联环境的核心是情境感知系统,该系统可根据情境分类促进服务发现、交付和适应。传统上,上下文是以依赖于领域的方式定义的。经典的情境模型侧重于丰富的情境,缺乏可用于决策支持的情境成本(CoC)。作者提出了一种受哲学启发的情境数学模型,其中包括情境活动分类中的置信度、所执行的操作和功率信息。由于单个重复性活动可能导致在不同时间执行不同的操作,因此最好记录这些操作。功耗信息包括整个上下文处理过程中消耗的电量,是上下文的质量属性。功耗是一个有用的 CoC 指标,适用于功耗受限的上下文感知。为了证明拟议工作的有效性,本研究描述了示例上下文,并以数学方式展示了上下文模型。将上下文与功率信息、行动和对分类结果的信心进行聚合,就形成了情境上下文的概念。研究结果表明,通过传感器数据收集的情境和通过远程服务推断的情境可以通过 CoC 参数变得更加丰富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Augmenting context with power information for green context-awareness in smart environments
The increase in the use of smart devices has led to the realization of the Internet of Everything (IoE). The heart of an IoE environment is a Context-Aware System that facilitates service discovery, delivery, and adaptation based on context classification. The context has been defined in a domain-dependent way, traditionally. The classical models of context have been focused on rich context and lack Cost of Context (CoC) that can be used for decision support. The authors present a philosophy-inspired mathematical model of context that includes confidence in activity classification of context, the actions performed, and the power information. Since a single recurring activity can lead to distinct actions performed at different times, it is better to record the actions. The power information includes the power consumed in the complete context processing and is a quality attribute of the context. Power consumption is a useful metric as CoC and is suitable for power-constrained context awareness. To demonstrate the effectiveness of the proposed work, example contexts are described, and the context model is presented mathematically in this study. The context is aggregated with power information, and actions and confidence on the classification outcome lead to the concept of situational context. The results show that the context gathered through sensor data and deduced through remote services can be made more rich with CoC parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computer Science
Frontiers in Computer Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.30
自引率
0.00%
发文量
152
审稿时长
13 weeks
期刊最新文献
A Support Vector Machine based approach for plagiarism detection in Python code submissions in undergraduate settings Working with agile and crowd: human factors identified from the industry Energy-efficient, low-latency, and non-contact eye blink detection with capacitive sensing Experimenting with D-Wave quantum annealers on prime factorization problems Fuzzy Markov model for the reliability analysis of hybrid microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1