{"title":"生态流行病学数学模型与迁移的复杂动态关系","authors":"Assane Savadogo, B. Sangaré, Wendkouni Ouedraogo","doi":"10.1155/2024/3312472","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an eco-epidemiological mathematical model in order to describe the effect of migration on the dynamics of a prey–predator population. The functional response of the predator is governed by the Holling type II function. First, from the perspective of mathematical results, we develop results concerning the existence, uniqueness, positivity, boundedness, and dissipativity of solutions. Besides, many thresholds have been computed and used to investigate the local and global stability results by using the Routh–Hurwitz criterion and Lyapunov principle, respectively. We have also established the appearance of limit cycles resulting from the Hopf bifurcation. Numerical simulations are performed to explore the effect of migration on the dynamic of prey and predator populations.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":"9 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Complex Dynamic of an Eco-Epidemiological Mathematical Model with Migration\",\"authors\":\"Assane Savadogo, B. Sangaré, Wendkouni Ouedraogo\",\"doi\":\"10.1155/2024/3312472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an eco-epidemiological mathematical model in order to describe the effect of migration on the dynamics of a prey–predator population. The functional response of the predator is governed by the Holling type II function. First, from the perspective of mathematical results, we develop results concerning the existence, uniqueness, positivity, boundedness, and dissipativity of solutions. Besides, many thresholds have been computed and used to investigate the local and global stability results by using the Routh–Hurwitz criterion and Lyapunov principle, respectively. We have also established the appearance of limit cycles resulting from the Hopf bifurcation. Numerical simulations are performed to explore the effect of migration on the dynamic of prey and predator populations.\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\"9 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3312472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3312472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A Complex Dynamic of an Eco-Epidemiological Mathematical Model with Migration
In this paper, we propose an eco-epidemiological mathematical model in order to describe the effect of migration on the dynamics of a prey–predator population. The functional response of the predator is governed by the Holling type II function. First, from the perspective of mathematical results, we develop results concerning the existence, uniqueness, positivity, boundedness, and dissipativity of solutions. Besides, many thresholds have been computed and used to investigate the local and global stability results by using the Routh–Hurwitz criterion and Lyapunov principle, respectively. We have also established the appearance of limit cycles resulting from the Hopf bifurcation. Numerical simulations are performed to explore the effect of migration on the dynamic of prey and predator populations.
期刊介绍:
Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.