{"title":"气候变化和土地利用土地覆被变化对集水尺度水平衡组成部分的响应:多站点校准方法","authors":"Shashi Bhushan Kumar, Ashok Mishra, S. S. Dash","doi":"10.2166/wcc.2024.581","DOIUrl":null,"url":null,"abstract":"\n \n The present study focused on evaluating the separate and combined response of land use land cover and climate change (CC) on future water balance components of a Subarnarekha River basin, spanning between the latitudes 21°33′N–23°18′N and longitudes 85°11′E–87°23′E, situated in the eastern India. The Soil and Water Assessment Tool is used for single-site calibration and multi-site calibration (MSC) of the model to characterize the future water balance components of the basin using the Cellular Automata-Markov model and climate projections under two representative concentration pathway (RCP) scenarios (4.5 and 8.5). The findings indicate that the model parameters obtained through MSC better represent spatial heterogeneity, making it the preferred calibration approach for model simulations. In the middle region of the basin, future annual water yield, groundwater recharge (GWR), and streamflow showed a reduction, respectively, by 46–47%, 29–30%, and 13–15%, while evapotranspiration showed an increase by 5–7% following projected CC under both RCP scenarios. The findings are relevant for policy-makers to mitigate the adverse effects of reduced GWR for sustainable water resources management. Future research may integrate reservoir operation framework to effectively address the water management issues of the basin.","PeriodicalId":506949,"journal":{"name":"Journal of Water and Climate Change","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of climate change and land use land cover change on catchment-scale water balance components: a multi-site calibration approach\",\"authors\":\"Shashi Bhushan Kumar, Ashok Mishra, S. S. Dash\",\"doi\":\"10.2166/wcc.2024.581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The present study focused on evaluating the separate and combined response of land use land cover and climate change (CC) on future water balance components of a Subarnarekha River basin, spanning between the latitudes 21°33′N–23°18′N and longitudes 85°11′E–87°23′E, situated in the eastern India. The Soil and Water Assessment Tool is used for single-site calibration and multi-site calibration (MSC) of the model to characterize the future water balance components of the basin using the Cellular Automata-Markov model and climate projections under two representative concentration pathway (RCP) scenarios (4.5 and 8.5). The findings indicate that the model parameters obtained through MSC better represent spatial heterogeneity, making it the preferred calibration approach for model simulations. In the middle region of the basin, future annual water yield, groundwater recharge (GWR), and streamflow showed a reduction, respectively, by 46–47%, 29–30%, and 13–15%, while evapotranspiration showed an increase by 5–7% following projected CC under both RCP scenarios. The findings are relevant for policy-makers to mitigate the adverse effects of reduced GWR for sustainable water resources management. Future research may integrate reservoir operation framework to effectively address the water management issues of the basin.\",\"PeriodicalId\":506949,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2024.581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Response of climate change and land use land cover change on catchment-scale water balance components: a multi-site calibration approach
The present study focused on evaluating the separate and combined response of land use land cover and climate change (CC) on future water balance components of a Subarnarekha River basin, spanning between the latitudes 21°33′N–23°18′N and longitudes 85°11′E–87°23′E, situated in the eastern India. The Soil and Water Assessment Tool is used for single-site calibration and multi-site calibration (MSC) of the model to characterize the future water balance components of the basin using the Cellular Automata-Markov model and climate projections under two representative concentration pathway (RCP) scenarios (4.5 and 8.5). The findings indicate that the model parameters obtained through MSC better represent spatial heterogeneity, making it the preferred calibration approach for model simulations. In the middle region of the basin, future annual water yield, groundwater recharge (GWR), and streamflow showed a reduction, respectively, by 46–47%, 29–30%, and 13–15%, while evapotranspiration showed an increase by 5–7% following projected CC under both RCP scenarios. The findings are relevant for policy-makers to mitigate the adverse effects of reduced GWR for sustainable water resources management. Future research may integrate reservoir operation framework to effectively address the water management issues of the basin.