发现具有 IL-10 增强活性的拓扑异构酶 I 抑制剂硝啶衍生物,用于治疗败血症

Siyu Liu, Yanting Pang, Zeng Zhao, Qingyan Sun
{"title":"发现具有 IL-10 增强活性的拓扑异构酶 I 抑制剂硝啶衍生物,用于治疗败血症","authors":"Siyu Liu, Yanting Pang, Zeng Zhao, Qingyan Sun","doi":"10.1055/s-0044-1780496","DOIUrl":null,"url":null,"abstract":"Nitidine chloride (NC) is a natural product that promotes the expression of interleukin-10 (IL-10) in macrophages by inhibiting topoisomerase I (TopoI) under stimulation by lipopolysaccharides (LPSs) and can be used in the treatment of sepsis. However, NC's poor water solubility limits its applications. This study aimed to design and synthesize a series of derivatives by simplifying the A- and E-rings in the structure of NC and introducing oxygen-containing groups, using NC as the lead compound. In this work, the ability of NC and its derivatives to induce IL-10 secretion and inhibit TopoI was evaluated. The water solubility of the compounds was determined in phosphate-buffered saline. An LPS-induced sepsis in mice was prepared to assess the activity of the compounds in vivo. Our data suggested that compound 6F showed better activity in inducing IL-10 secretion and inhibiting TopoI, and its water solubility was at least 500-fold higher than that of NC. When septic mice were given 6F (3 mg/kg), their survival rate was comparable to those treated with NC. Based on our findings, 6F may be a new drug candidate for the treatment of sepsis.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"13 69","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Topoisomerase I Inhibitor Nitidine Derivatives with IL-10 Enhancing Activity for the Treatment of Sepsis\",\"authors\":\"Siyu Liu, Yanting Pang, Zeng Zhao, Qingyan Sun\",\"doi\":\"10.1055/s-0044-1780496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitidine chloride (NC) is a natural product that promotes the expression of interleukin-10 (IL-10) in macrophages by inhibiting topoisomerase I (TopoI) under stimulation by lipopolysaccharides (LPSs) and can be used in the treatment of sepsis. However, NC's poor water solubility limits its applications. This study aimed to design and synthesize a series of derivatives by simplifying the A- and E-rings in the structure of NC and introducing oxygen-containing groups, using NC as the lead compound. In this work, the ability of NC and its derivatives to induce IL-10 secretion and inhibit TopoI was evaluated. The water solubility of the compounds was determined in phosphate-buffered saline. An LPS-induced sepsis in mice was prepared to assess the activity of the compounds in vivo. Our data suggested that compound 6F showed better activity in inducing IL-10 secretion and inhibiting TopoI, and its water solubility was at least 500-fold higher than that of NC. When septic mice were given 6F (3 mg/kg), their survival rate was comparable to those treated with NC. Based on our findings, 6F may be a new drug candidate for the treatment of sepsis.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"13 69\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0044-1780496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0044-1780496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氯化硝啶(NC)是一种天然产品,在脂多糖(LPS)的刺激下,它通过抑制拓扑异构酶 I(TopoI)促进巨噬细胞中白细胞介素-10(IL-10)的表达,可用于治疗败血症。然而,NC 的水溶性较差,限制了其应用。本研究旨在以 NC 为先导化合物,通过简化 NC 结构中的 A 环和 E 环,引入含氧基团,设计并合成一系列衍生物。本研究评估了 NC 及其衍生物诱导 IL-10 分泌和抑制 TopoI 的能力。在磷酸盐缓冲盐水中测定了化合物的水溶性。为了评估化合物在体内的活性,我们制备了 LPS 诱导的败血症小鼠。我们的数据表明,化合物 6F 在诱导 IL-10 分泌和抑制 TopoI 方面表现出更好的活性,其水溶性至少比 NC 高 500 倍。给败血症小鼠注射 6F(3 毫克/千克)后,其存活率与接受 NC 治疗的小鼠相当。根据我们的研究结果,6F可能是一种治疗败血症的候选新药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of Topoisomerase I Inhibitor Nitidine Derivatives with IL-10 Enhancing Activity for the Treatment of Sepsis
Nitidine chloride (NC) is a natural product that promotes the expression of interleukin-10 (IL-10) in macrophages by inhibiting topoisomerase I (TopoI) under stimulation by lipopolysaccharides (LPSs) and can be used in the treatment of sepsis. However, NC's poor water solubility limits its applications. This study aimed to design and synthesize a series of derivatives by simplifying the A- and E-rings in the structure of NC and introducing oxygen-containing groups, using NC as the lead compound. In this work, the ability of NC and its derivatives to induce IL-10 secretion and inhibit TopoI was evaluated. The water solubility of the compounds was determined in phosphate-buffered saline. An LPS-induced sepsis in mice was prepared to assess the activity of the compounds in vivo. Our data suggested that compound 6F showed better activity in inducing IL-10 secretion and inhibiting TopoI, and its water solubility was at least 500-fold higher than that of NC. When septic mice were given 6F (3 mg/kg), their survival rate was comparable to those treated with NC. Based on our findings, 6F may be a new drug candidate for the treatment of sepsis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
15 weeks
期刊最新文献
Recent Advances in Mitochondrial Pyruvate Carrier Inhibitors Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library Research Strategies for Precise Manipulation of Micro/Nanoparticle Drug Delivery Systems Using Microfluidic Technology: A Review Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy 3D Printing Pharmaceuticals: Current Status and Future Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1