Soqia:用于动态时空监测树木栽培中土壤水分状况的响应式网络地理信息系统解决方案

Lahoucine Ennatiqi, Mourad Bouziani, Reda Yaagoubi, Lahcen Kenny
{"title":"Soqia:用于动态时空监测树木栽培中土壤水分状况的响应式网络地理信息系统解决方案","authors":"Lahoucine Ennatiqi, Mourad Bouziani, Reda Yaagoubi, Lahcen Kenny","doi":"10.3390/agriengineering6010042","DOIUrl":null,"url":null,"abstract":"The optimization of irrigation in arboriculture holds crucial importance for effectively managing water resources in arid regions. This work introduces the development and implementation of an innovative solution named ‘Soqia’, a responsive WEB-GIS web application designed for real-time monitoring of the water status in arboriculture. This solution integrates meteorological data, remote sensing data, and ground sensor-collected data for precise irrigation management at the agricultural plot level. A range of features has been considered in the development of this WEB -GIS solution, ranging from visualizing vegetation indices to accessing current weather data, thereby contributing to more efficient irrigation management. Compared to other existing applications, ‘Soqia’ provides users with the current amount of water to irrigate, as well as an estimated amount for the next 8 days. Additionally, it offers spatio-temporal tracking of vegetation indices provided as maps and graphs. The importance of the Soqia solution at the national level is justified by the scarcity of water resources due to increasingly frequent and intense drought seasons for the past years. Low rainfall is recorded in all national agricultural areas. The implemented prototype is a first step toward the development of future innovative tools aimed at improving water management in regions facing water challenges. This prototype illustrates the potential of Web-GIS-based precision irrigation systems for the rational use of water in agriculture in general and arboriculture in particular.","PeriodicalId":7846,"journal":{"name":"AgriEngineering","volume":"11 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soqia: A Responsive Web Geographic Information System Solution for Dynamic Spatio-Temporal Monitoring of Soil Water Status in Arboriculture\",\"authors\":\"Lahoucine Ennatiqi, Mourad Bouziani, Reda Yaagoubi, Lahcen Kenny\",\"doi\":\"10.3390/agriengineering6010042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization of irrigation in arboriculture holds crucial importance for effectively managing water resources in arid regions. This work introduces the development and implementation of an innovative solution named ‘Soqia’, a responsive WEB-GIS web application designed for real-time monitoring of the water status in arboriculture. This solution integrates meteorological data, remote sensing data, and ground sensor-collected data for precise irrigation management at the agricultural plot level. A range of features has been considered in the development of this WEB -GIS solution, ranging from visualizing vegetation indices to accessing current weather data, thereby contributing to more efficient irrigation management. Compared to other existing applications, ‘Soqia’ provides users with the current amount of water to irrigate, as well as an estimated amount for the next 8 days. Additionally, it offers spatio-temporal tracking of vegetation indices provided as maps and graphs. The importance of the Soqia solution at the national level is justified by the scarcity of water resources due to increasingly frequent and intense drought seasons for the past years. Low rainfall is recorded in all national agricultural areas. The implemented prototype is a first step toward the development of future innovative tools aimed at improving water management in regions facing water challenges. This prototype illustrates the potential of Web-GIS-based precision irrigation systems for the rational use of water in agriculture in general and arboriculture in particular.\",\"PeriodicalId\":7846,\"journal\":{\"name\":\"AgriEngineering\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriengineering6010042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering6010042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优化树木栽培中的灌溉对于有效管理干旱地区的水资源至关重要。这项工作介绍了一种名为 "Soqia "的创新解决方案的开发和实施情况,这是一种反应灵敏的 WEB-GIS 网络应用程序,设计用于实时监测树木栽培中的水分状况。该解决方案整合了气象数据、遥感数据和地面传感器收集的数据,可在农业小区层面进行精确灌溉管理。在开发这一 WEB-GIS 解决方案时,考虑了从植被指数可视化到获取当前天气数据等一系列功能,从而有助于提高灌溉管理效率。与其他现有应用程序相比,"Soqia "可为用户提供当前灌溉水量以及未来 8 天的预计灌溉水量。此外,它还能以地图和图表的形式对植被指数进行时空跟踪。由于过去几年干旱季节日益频繁和严重,水资源匮乏,因此 Soqia 解决方案在全国范围内的重要性不言而喻。全国所有农业地区都出现了降雨量偏低的情况。实施的原型是开发未来创新工具的第一步,旨在改善面临水资源挑战地区的水资源管理。该原型展示了基于 Web-GIS 的精确灌溉系统在合理利用农业用水,特别是树木栽培用水方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soqia: A Responsive Web Geographic Information System Solution for Dynamic Spatio-Temporal Monitoring of Soil Water Status in Arboriculture
The optimization of irrigation in arboriculture holds crucial importance for effectively managing water resources in arid regions. This work introduces the development and implementation of an innovative solution named ‘Soqia’, a responsive WEB-GIS web application designed for real-time monitoring of the water status in arboriculture. This solution integrates meteorological data, remote sensing data, and ground sensor-collected data for precise irrigation management at the agricultural plot level. A range of features has been considered in the development of this WEB -GIS solution, ranging from visualizing vegetation indices to accessing current weather data, thereby contributing to more efficient irrigation management. Compared to other existing applications, ‘Soqia’ provides users with the current amount of water to irrigate, as well as an estimated amount for the next 8 days. Additionally, it offers spatio-temporal tracking of vegetation indices provided as maps and graphs. The importance of the Soqia solution at the national level is justified by the scarcity of water resources due to increasingly frequent and intense drought seasons for the past years. Low rainfall is recorded in all national agricultural areas. The implemented prototype is a first step toward the development of future innovative tools aimed at improving water management in regions facing water challenges. This prototype illustrates the potential of Web-GIS-based precision irrigation systems for the rational use of water in agriculture in general and arboriculture in particular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Engineering Method for Improving Air Quality of Cage-Free Hen Housing Optimizing Deep Learning Algorithms for Effective Chicken Tracking through Image Processing Integrating Actuator Fault-Tolerant Control and Deep-Learning-Based NDVI Estimation for Precision Agriculture with a Hexacopter UAV Usability Testing of Novel IoT-Infused Digital Services on Farm Equipment Reveals Farmer’s Requirements towards Future Human–Machine Interface Design Guidelines Chemical Control of Coffee Berry Borer Using Unmanned Aerial Vehicle under Different Operating Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1