集合分类器在回答心理学常见问题时的性能比较

Vy Thuy Tong, Hieu Chi Tran, Kiet Trung Tran
{"title":"集合分类器在回答心理学常见问题时的性能比较","authors":"Vy Thuy Tong, Hieu Chi Tran, Kiet Trung Tran","doi":"10.46223/hcmcoujs.tech.en.14.1.2921.2024","DOIUrl":null,"url":null,"abstract":"In today’s era of digital healthcare transformation, there is a growing demand for swift responses to mental health queries. To meet this need, we introduce an AI-driven chatbot system designed to automatically address frequently asked questions in psychology. Leveraging a range of classifiers including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes, our system extracts insights from expert data sources and employs natural language processing techniques like LDA Topic Modeling and Cosine similarity to generate contextually relevant responses. Through rigorous experimentation, we find that SVM surpasses Naïve Bayes and KNN in accuracy, precision, recall, and F1-score, making it our top choice for constructing the final response system. This research underscores the effectiveness of ensemble classifiers, particularly SVM, in providing accurate and valuable information to enhance mental health support in response to common psychological inquiries.","PeriodicalId":512408,"journal":{"name":"HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY","volume":"11 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance comparison ensemble classifier’s performance in answering frequently asked questions about psychology\",\"authors\":\"Vy Thuy Tong, Hieu Chi Tran, Kiet Trung Tran\",\"doi\":\"10.46223/hcmcoujs.tech.en.14.1.2921.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today’s era of digital healthcare transformation, there is a growing demand for swift responses to mental health queries. To meet this need, we introduce an AI-driven chatbot system designed to automatically address frequently asked questions in psychology. Leveraging a range of classifiers including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes, our system extracts insights from expert data sources and employs natural language processing techniques like LDA Topic Modeling and Cosine similarity to generate contextually relevant responses. Through rigorous experimentation, we find that SVM surpasses Naïve Bayes and KNN in accuracy, precision, recall, and F1-score, making it our top choice for constructing the final response system. This research underscores the effectiveness of ensemble classifiers, particularly SVM, in providing accurate and valuable information to enhance mental health support in response to common psychological inquiries.\",\"PeriodicalId\":512408,\"journal\":{\"name\":\"HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY\",\"volume\":\"11 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46223/hcmcoujs.tech.en.14.1.2921.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46223/hcmcoujs.tech.en.14.1.2921.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今的数字医疗转型时代,人们对快速回复心理健康问题的需求日益增长。为了满足这一需求,我们推出了一款人工智能驱动的聊天机器人系统,旨在自动解决心理学方面的常见问题。我们的系统利用支持向量机(SVM)、K-近邻(KNN)和奈夫贝叶斯(Naïve Bayes)等一系列分类器,从专家数据源中提取见解,并采用 LDA 主题建模和余弦相似性等自然语言处理技术,生成与上下文相关的回复。通过严格的实验,我们发现 SVM 在准确度、精确度、召回率和 F1 分数方面都超过了 Naïve Bayes 和 KNN,因此成为我们构建最终回复系统的首选。这项研究强调了集合分类器的有效性,尤其是 SVM,它能提供准确而有价值的信息,在回答常见的心理咨询时加强心理健康支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance comparison ensemble classifier’s performance in answering frequently asked questions about psychology
In today’s era of digital healthcare transformation, there is a growing demand for swift responses to mental health queries. To meet this need, we introduce an AI-driven chatbot system designed to automatically address frequently asked questions in psychology. Leveraging a range of classifiers including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes, our system extracts insights from expert data sources and employs natural language processing techniques like LDA Topic Modeling and Cosine similarity to generate contextually relevant responses. Through rigorous experimentation, we find that SVM surpasses Naïve Bayes and KNN in accuracy, precision, recall, and F1-score, making it our top choice for constructing the final response system. This research underscores the effectiveness of ensemble classifiers, particularly SVM, in providing accurate and valuable information to enhance mental health support in response to common psychological inquiries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid knowledge-infused collaborative filtering for enhanced movie clustering and recommendation Performance comparison ensemble classifier’s performance in answering frequently asked questions about psychology Integrating BIM and computer vision for preventing Hazards at construction sites A study on constructing an efficient examination scheduling system Detecting spelling errors in Vietnamese administrative document using large language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1