三维物联网的能量平衡自组织网络算法

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS International Journal of Automation Technology Pub Date : 2024-03-05 DOI:10.20965/ijat.2024.p0316
Amin Suharjono
{"title":"三维物联网的能量平衡自组织网络算法","authors":"Amin Suharjono","doi":"10.20965/ijat.2024.p0316","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) is developing rapidly with wider application fields. IoT’s main infrastructure is called a wireless sensor network (WSN). Hence, WSN must be able to operate on various network models. Multi-hop clustering is considered a solution for adapting to various network sizes. Multi-hop clustering must be designed to maintain the balance of energy consumption between nodes, and many algorithms have been proposed for this purpose. However, most clustering algorithms are designed with the assumption that the network is a two-dimensional plane. In many applications, WSN is more appropriately modeled as a three-dimensional (3D) network, for example, the WSN application for structural health monitoring or underwater wireless sensor networks. Here, a clustering algorithm for 3D-WSN is proposed. This algorithm is developed based on an analysis of the balance of energy consumption, such that the network lifetime is expected to be longer. The main novelty of our algorithm is the utilization of multi-hop layered transmission. From the simulation, the performance of the proposed algorithm exhibits a good energy balance compared to an un-balanced analysis.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Balanced Self-Organizing Networks Algorithm for Three-Dimensional Internet of Things\",\"authors\":\"Amin Suharjono\",\"doi\":\"10.20965/ijat.2024.p0316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoT) is developing rapidly with wider application fields. IoT’s main infrastructure is called a wireless sensor network (WSN). Hence, WSN must be able to operate on various network models. Multi-hop clustering is considered a solution for adapting to various network sizes. Multi-hop clustering must be designed to maintain the balance of energy consumption between nodes, and many algorithms have been proposed for this purpose. However, most clustering algorithms are designed with the assumption that the network is a two-dimensional plane. In many applications, WSN is more appropriately modeled as a three-dimensional (3D) network, for example, the WSN application for structural health monitoring or underwater wireless sensor networks. Here, a clustering algorithm for 3D-WSN is proposed. This algorithm is developed based on an analysis of the balance of energy consumption, such that the network lifetime is expected to be longer. The main novelty of our algorithm is the utilization of multi-hop layered transmission. From the simulation, the performance of the proposed algorithm exhibits a good energy balance compared to an un-balanced analysis.\",\"PeriodicalId\":43716,\"journal\":{\"name\":\"International Journal of Automation Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2024.p0316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)发展迅速,应用领域日益广泛。物联网的主要基础设施被称为无线传感器网络(WSN)。 因此,WSN 必须能够在各种网络模式下运行。多跳聚类被认为是适应各种网络规模的解决方案。多跳聚类的设计必须保持节点之间的能量消耗平衡,为此提出了许多算法。然而,大多数聚类算法的设计假设网络是一个二维平面。在许多应用中,将 WSN 建模为三维(3D)网络更为合适,例如用于结构健康监测或水下无线传感器网络的 WSN 应用。本文提出了一种用于三维 WSN 的聚类算法。该算法是在分析能量消耗平衡的基础上开发的,因此网络寿命有望延长。我们算法的主要创新点是利用多跳分层传输。通过仿真,与非平衡分析相比,所提算法的性能表现出良好的能量平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Balanced Self-Organizing Networks Algorithm for Three-Dimensional Internet of Things
Internet of Things (IoT) is developing rapidly with wider application fields. IoT’s main infrastructure is called a wireless sensor network (WSN). Hence, WSN must be able to operate on various network models. Multi-hop clustering is considered a solution for adapting to various network sizes. Multi-hop clustering must be designed to maintain the balance of energy consumption between nodes, and many algorithms have been proposed for this purpose. However, most clustering algorithms are designed with the assumption that the network is a two-dimensional plane. In many applications, WSN is more appropriately modeled as a three-dimensional (3D) network, for example, the WSN application for structural health monitoring or underwater wireless sensor networks. Here, a clustering algorithm for 3D-WSN is proposed. This algorithm is developed based on an analysis of the balance of energy consumption, such that the network lifetime is expected to be longer. The main novelty of our algorithm is the utilization of multi-hop layered transmission. From the simulation, the performance of the proposed algorithm exhibits a good energy balance compared to an un-balanced analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
期刊最新文献
Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System Effect of Different Feed Rates on Chip Evacuation in Drilling of Lead-Free Brass with a Small-Diameter Drill Special Issue on Recent Advanced Manufacturing Science and Technology Initial Wear of Fixed Diamond Wire Tool –Effect of Slurry Assisted Slicing on Machining Mechanism— Tool Path Design of Metal Powder Extrusion in Additive Manufacturing for Suppressing Shape Error Caused During Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1