利用加工中心采集的刀具图像现场评估钻头磨损情况

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS International Journal of Automation Technology Pub Date : 2024-03-05 DOI:10.20965/ijat.2024.p0181
Tatsuya Furuki, Tomoki Nagai, Koichi Nishigaki, Takashi Suda, Hiroyuki Kousaka
{"title":"利用加工中心采集的刀具图像现场评估钻头磨损情况","authors":"Tatsuya Furuki, Tomoki Nagai, Koichi Nishigaki, Takashi Suda, Hiroyuki Kousaka","doi":"10.20965/ijat.2024.p0181","DOIUrl":null,"url":null,"abstract":"Owing to the rise in demand for electric devices, there has been an increase in the need for manufacturing equipment that produces internal control board parts. To operate this machinery, several ceramic components, such as a chuck table and fastening parts, are required. Consequently, the need for efficiently and precisely machining ceramics has increased. However, ceramics are known for their high hardness, which can lead to tool breakage when using a small tool. This is often influenced by the state of the tool wear. If the drill tip breaks off and becomes embedded in the workpiece, it could take time to remove or destroy the workpiece. To prevent such problems, drills are replaced after a certain number of machining processes, or the operator visually inspects the drill’s wear condition. Unfortunately, these methods reduce machining efficiency. Therefore, we propose a device that captures drill images on a machine tool and measures the amount of drill wear to evaluate the drill’s condition. We fabricated a device to acquire drill images and attempted to quantify the drill wear condition, such as the area and width of the worn part, by analyzing the worn shape from an image of the bottom surface of the drill.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Evaluation of Drill Wear Using Tool Image Captured on Machining Center\",\"authors\":\"Tatsuya Furuki, Tomoki Nagai, Koichi Nishigaki, Takashi Suda, Hiroyuki Kousaka\",\"doi\":\"10.20965/ijat.2024.p0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the rise in demand for electric devices, there has been an increase in the need for manufacturing equipment that produces internal control board parts. To operate this machinery, several ceramic components, such as a chuck table and fastening parts, are required. Consequently, the need for efficiently and precisely machining ceramics has increased. However, ceramics are known for their high hardness, which can lead to tool breakage when using a small tool. This is often influenced by the state of the tool wear. If the drill tip breaks off and becomes embedded in the workpiece, it could take time to remove or destroy the workpiece. To prevent such problems, drills are replaced after a certain number of machining processes, or the operator visually inspects the drill’s wear condition. Unfortunately, these methods reduce machining efficiency. Therefore, we propose a device that captures drill images on a machine tool and measures the amount of drill wear to evaluate the drill’s condition. We fabricated a device to acquire drill images and attempted to quantify the drill wear condition, such as the area and width of the worn part, by analyzing the worn shape from an image of the bottom surface of the drill.\",\"PeriodicalId\":43716,\"journal\":{\"name\":\"International Journal of Automation Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2024.p0181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于对电气设备需求的增加,对生产内部控制板部件的制造设备的需求也在增加。为了操作这些设备,需要使用多个陶瓷部件,如卡盘和紧固部件。因此,对高效、精确地加工陶瓷的需求也随之增加。然而,陶瓷以其高硬度著称,使用小刀具时可能会导致刀具破损。这通常受到刀具磨损状态的影响。如果钻尖断裂并嵌入工件,可能需要一段时间才能取出或破坏工件。为防止出现此类问题,钻头会在加工一定次数后进行更换,或由操作员目测钻头的磨损状况。遗憾的是,这些方法都会降低加工效率。因此,我们提出了一种在机床上捕捉钻头图像并测量钻头磨损量以评估钻头状况的装置。我们制造了一种用于获取钻头图像的设备,并尝试通过分析钻头底面图像中的磨损形状来量化钻头的磨损状况,例如磨损部位的面积和宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Situ Evaluation of Drill Wear Using Tool Image Captured on Machining Center
Owing to the rise in demand for electric devices, there has been an increase in the need for manufacturing equipment that produces internal control board parts. To operate this machinery, several ceramic components, such as a chuck table and fastening parts, are required. Consequently, the need for efficiently and precisely machining ceramics has increased. However, ceramics are known for their high hardness, which can lead to tool breakage when using a small tool. This is often influenced by the state of the tool wear. If the drill tip breaks off and becomes embedded in the workpiece, it could take time to remove or destroy the workpiece. To prevent such problems, drills are replaced after a certain number of machining processes, or the operator visually inspects the drill’s wear condition. Unfortunately, these methods reduce machining efficiency. Therefore, we propose a device that captures drill images on a machine tool and measures the amount of drill wear to evaluate the drill’s condition. We fabricated a device to acquire drill images and attempted to quantify the drill wear condition, such as the area and width of the worn part, by analyzing the worn shape from an image of the bottom surface of the drill.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
期刊最新文献
Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System Effect of Different Feed Rates on Chip Evacuation in Drilling of Lead-Free Brass with a Small-Diameter Drill Special Issue on Recent Advanced Manufacturing Science and Technology Initial Wear of Fixed Diamond Wire Tool –Effect of Slurry Assisted Slicing on Machining Mechanism— Tool Path Design of Metal Powder Extrusion in Additive Manufacturing for Suppressing Shape Error Caused During Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1