具有焦耳加热效应的 Oldroyd-B 液体双向强制对流停滞点流动:有限差分模拟

Q2 Mathematics CFD Letters Pub Date : 2024-03-04 DOI:10.37934/cfdl.16.7.2238
Bilal Ahmed
{"title":"具有焦耳加热效应的 Oldroyd-B 液体双向强制对流停滞点流动:有限差分模拟","authors":"Bilal Ahmed","doi":"10.37934/cfdl.16.7.2238","DOIUrl":null,"url":null,"abstract":"The impact of Joule heating for the three-dimensional stagnation point flow of non-Newtonian liquid (namely Oldroyd-B) nanomaterial has been inspected. The influence of mixed convection and the magnetic force is also considered. The flow is induced by the bidirectional stretched surface which moves linearly. The partial differential equations for the developed model are altered into dimensionless statements first. The numerical simulations with the implementation of a finite difference scheme are used for the numerical description. The physical description of parameters is presented against the flow parameters. The results reveal that there is a reverse change in velocity observed for both the relaxation time constant and the retardation constant. Furthermore, the heat transfer rate decreases as the ratio parameter increases. The thickness of the boundary layer increases due to the retardation time and can also be regulated by the application of a magnetic field. An increase in the magnetic parameter leads to an enhancement in temperature and an increase in thermal boundary layer thickness.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"12 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-directional Forced Convective Stagnation Points Flow of Oldroyd-B Liquid with Joule Heating Effects: A Finite Difference Simulations\",\"authors\":\"Bilal Ahmed\",\"doi\":\"10.37934/cfdl.16.7.2238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of Joule heating for the three-dimensional stagnation point flow of non-Newtonian liquid (namely Oldroyd-B) nanomaterial has been inspected. The influence of mixed convection and the magnetic force is also considered. The flow is induced by the bidirectional stretched surface which moves linearly. The partial differential equations for the developed model are altered into dimensionless statements first. The numerical simulations with the implementation of a finite difference scheme are used for the numerical description. The physical description of parameters is presented against the flow parameters. The results reveal that there is a reverse change in velocity observed for both the relaxation time constant and the retardation constant. Furthermore, the heat transfer rate decreases as the ratio parameter increases. The thickness of the boundary layer increases due to the retardation time and can also be regulated by the application of a magnetic field. An increase in the magnetic parameter leads to an enhancement in temperature and an increase in thermal boundary layer thickness.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":\"12 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.7.2238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.7.2238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了焦耳加热对非牛顿液体(即 Oldroyd-B)纳米材料三维停滞点流动的影响。同时还考虑了混合对流和磁力的影响。流动由线性移动的双向拉伸表面引起。首先将所开发模型的偏微分方程转换为无量纲语句。数值模拟采用有限差分方案进行数值描述。参数的物理描述与流动参数相对应。结果表明,在弛豫时间常数和迟滞常数方面都观察到了速度的反向变化。此外,传热速率随着比率参数的增加而降低。边界层的厚度因延迟时间而增加,也可以通过施加磁场来调节。磁参数的增加会导致温度升高和热边界层厚度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bi-directional Forced Convective Stagnation Points Flow of Oldroyd-B Liquid with Joule Heating Effects: A Finite Difference Simulations
The impact of Joule heating for the three-dimensional stagnation point flow of non-Newtonian liquid (namely Oldroyd-B) nanomaterial has been inspected. The influence of mixed convection and the magnetic force is also considered. The flow is induced by the bidirectional stretched surface which moves linearly. The partial differential equations for the developed model are altered into dimensionless statements first. The numerical simulations with the implementation of a finite difference scheme are used for the numerical description. The physical description of parameters is presented against the flow parameters. The results reveal that there is a reverse change in velocity observed for both the relaxation time constant and the retardation constant. Furthermore, the heat transfer rate decreases as the ratio parameter increases. The thickness of the boundary layer increases due to the retardation time and can also be regulated by the application of a magnetic field. An increase in the magnetic parameter leads to an enhancement in temperature and an increase in thermal boundary layer thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
期刊最新文献
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1