对科学数据中的社会生态偏差进行背景分析的框架

IF 4.2 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION People and Nature Pub Date : 2024-03-03 DOI:10.1002/pan3.10592
Elizabeth J. Carlen, Cesar O. Estien, Tal Caspi, Deja Perkins, Benjamin R. Goldstein, Samantha E. S. Kreling, Yasmine Hentati, Tyus D. Williams, Lauren A. Stanton, Simone Des Roches, Rebecca F. Johnson, Alison N Young, Caren Cooper, Christopher J. Schell
{"title":"对科学数据中的社会生态偏差进行背景分析的框架","authors":"Elizabeth J. Carlen, Cesar O. Estien, Tal Caspi, Deja Perkins, Benjamin R. Goldstein, Samantha E. S. Kreling, Yasmine Hentati, Tyus D. Williams, Lauren A. Stanton, Simone Des Roches, Rebecca F. Johnson, Alison N Young, Caren Cooper, Christopher J. Schell","doi":"10.1002/pan3.10592","DOIUrl":null,"url":null,"abstract":"\n\n\nContributory science—including citizen and community science—allows scientists to leverage participant‐generated data while providing an opportunity for engaging with local community members. Data yielded by participant‐generated biodiversity platforms allow professional scientists to answer ecological and evolutionary questions across both geographic and temporal scales, which is incredibly valuable for conservation efforts.\n\nThe data reported to contributory biodiversity platforms, such as eBird and iNaturalist, can be driven by social and ecological variables, leading to biased data. Though empirical work has highlighted the biases in contributory data, little work has articulated how biases arise in contributory data and the societal consequences of these biases.\n\nWe present a conceptual framework illustrating how social and ecological variables create bias in contributory science data. In this framework, we present four filters—participation, detectability, sampling and preference—that ultimately shape the type and location of contributory biodiversity data. We leverage this framework to examine data from the largest contributory science platforms—eBird and iNaturalist—in St. Louis, Missouri, the United States, and discuss the potential consequences of biased data.\n\nLastly, we conclude by providing several recommendations for researchers and institutions to move towards a more inclusive field. With these recommendations, we provide opportunities to ameliorate biases in contributory data and an opportunity to practice equitable biodiversity conservation.\n\nRead the free Plain Language Summary for this article on the Journal blog.","PeriodicalId":52850,"journal":{"name":"People and Nature","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for contextualizing social‐ecological biases in contributory science data\",\"authors\":\"Elizabeth J. Carlen, Cesar O. Estien, Tal Caspi, Deja Perkins, Benjamin R. Goldstein, Samantha E. S. Kreling, Yasmine Hentati, Tyus D. Williams, Lauren A. Stanton, Simone Des Roches, Rebecca F. Johnson, Alison N Young, Caren Cooper, Christopher J. Schell\",\"doi\":\"10.1002/pan3.10592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nContributory science—including citizen and community science—allows scientists to leverage participant‐generated data while providing an opportunity for engaging with local community members. Data yielded by participant‐generated biodiversity platforms allow professional scientists to answer ecological and evolutionary questions across both geographic and temporal scales, which is incredibly valuable for conservation efforts.\\n\\nThe data reported to contributory biodiversity platforms, such as eBird and iNaturalist, can be driven by social and ecological variables, leading to biased data. Though empirical work has highlighted the biases in contributory data, little work has articulated how biases arise in contributory data and the societal consequences of these biases.\\n\\nWe present a conceptual framework illustrating how social and ecological variables create bias in contributory science data. In this framework, we present four filters—participation, detectability, sampling and preference—that ultimately shape the type and location of contributory biodiversity data. We leverage this framework to examine data from the largest contributory science platforms—eBird and iNaturalist—in St. Louis, Missouri, the United States, and discuss the potential consequences of biased data.\\n\\nLastly, we conclude by providing several recommendations for researchers and institutions to move towards a more inclusive field. With these recommendations, we provide opportunities to ameliorate biases in contributory data and an opportunity to practice equitable biodiversity conservation.\\n\\nRead the free Plain Language Summary for this article on the Journal blog.\",\"PeriodicalId\":52850,\"journal\":{\"name\":\"People and Nature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"People and Nature\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/pan3.10592\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"People and Nature","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/pan3.10592","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

贡献科学--包括公民科学和社区科学--使科学家能够利用参与者生成的数据,同时提供与当地社区成员互动的机会。由参与者生成的生物多样性平台所产生的数据使专业科学家能够回答跨地理和时间尺度的生态和进化问题,这对保护工作具有难以置信的价值。向生物多样性贡献平台(如 eBird 和 iNaturalist)报告的数据可能受到社会和生态变量的驱动,从而导致数据偏差。虽然实证工作已经强调了贡献数据中的偏差,但很少有工作阐明贡献数据中的偏差是如何产生的,以及这些偏差的社会后果。我们提出了一个概念框架,说明社会和生态变量如何在贡献科学数据中产生偏差。在这一框架中,我们提出了四个过滤器--参与、可探测性、取样和偏好--它们最终形成了生物多样性贡献数据的类型和位置。最后,我们为研究人员和机构提供了几项建议,以迈向更具包容性的领域。通过这些建议,我们为改善贡献数据中的偏差提供了机会,也为实践公平的生物多样性保护提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A framework for contextualizing social‐ecological biases in contributory science data
Contributory science—including citizen and community science—allows scientists to leverage participant‐generated data while providing an opportunity for engaging with local community members. Data yielded by participant‐generated biodiversity platforms allow professional scientists to answer ecological and evolutionary questions across both geographic and temporal scales, which is incredibly valuable for conservation efforts. The data reported to contributory biodiversity platforms, such as eBird and iNaturalist, can be driven by social and ecological variables, leading to biased data. Though empirical work has highlighted the biases in contributory data, little work has articulated how biases arise in contributory data and the societal consequences of these biases. We present a conceptual framework illustrating how social and ecological variables create bias in contributory science data. In this framework, we present four filters—participation, detectability, sampling and preference—that ultimately shape the type and location of contributory biodiversity data. We leverage this framework to examine data from the largest contributory science platforms—eBird and iNaturalist—in St. Louis, Missouri, the United States, and discuss the potential consequences of biased data. Lastly, we conclude by providing several recommendations for researchers and institutions to move towards a more inclusive field. With these recommendations, we provide opportunities to ameliorate biases in contributory data and an opportunity to practice equitable biodiversity conservation. Read the free Plain Language Summary for this article on the Journal blog.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
People and Nature
People and Nature Multiple-
CiteScore
10.00
自引率
9.80%
发文量
103
审稿时长
12 weeks
期刊介绍:
期刊最新文献
From cash to conservation: Which wildlife species appear on banknotes? Slugs Count: Assessing citizen scientist engagement and development, and the accuracy of their identifications The frequent five: Insights from interviews with urban wildlife professionals in Germany Gugwilx'ya'ansk and goats: Indigenous perspectives on governance, stewardship and relationality in mountain goat (mati) hunting in Gitga'at territory Using gross ecosystem product to harmonize biodiversity conservation and economic development in Southwestern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1