RNA m6A修饰的测序、生理调控和代表性疾病研究进展

Xiaoqian Chen, Yuanyuan Li, Youfang Gan, Yuyang Guo, Hongling Zhou, Rui Wang
{"title":"RNA m6A修饰的测序、生理调控和代表性疾病研究进展","authors":"Xiaoqian Chen, Yuanyuan Li, Youfang Gan, Yuyang Guo, Hongling Zhou, Rui Wang","doi":"10.1055/s-0044-1780506","DOIUrl":null,"url":null,"abstract":"To date, more than 150 chemical modifications have been disclosed in different RNA species, which are employed to diversify the structure and function of RNA in living organisms. The N\n 6-methyladenosine (m6A) modification, which is found in the adenosine N\n 6 site of RNA, has been demonstrated to be the most heavy modification in the mRNA in cells. Moreover, the m6A modification in mRNAs of mammalian and other eukaryotic cells is highly conserved and mandatorily encoded. Increasing evidence indicates that the m6A modification plays a pivotal role in gene-expression regulation and cell-fate decisions. Here, we summarize the most recent m6A-sequencing technology, as well as the molecular mechanism underlying its occurrence, development, and potential use as a target for the treatment of human diseases. Furthermore, our review highlights other newly discovered chemical modifications of RNA that are associated with human disease, as well as their underlying molecular mechanisms. Thus, significant advancements have been made in qualitative/quantitative m6A detection and high-throughput sequencing, and research linking this RNA modification to disease. Efforts toward simplified and more accessible chemical/biological technologies that contribute to precision medicine are ongoing, to benefit society and patients alike.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"16 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequencing, Physiological Regulation, and Representative Disease Research Progress of RNA m6A Modification\",\"authors\":\"Xiaoqian Chen, Yuanyuan Li, Youfang Gan, Yuyang Guo, Hongling Zhou, Rui Wang\",\"doi\":\"10.1055/s-0044-1780506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To date, more than 150 chemical modifications have been disclosed in different RNA species, which are employed to diversify the structure and function of RNA in living organisms. The N\\n 6-methyladenosine (m6A) modification, which is found in the adenosine N\\n 6 site of RNA, has been demonstrated to be the most heavy modification in the mRNA in cells. Moreover, the m6A modification in mRNAs of mammalian and other eukaryotic cells is highly conserved and mandatorily encoded. Increasing evidence indicates that the m6A modification plays a pivotal role in gene-expression regulation and cell-fate decisions. Here, we summarize the most recent m6A-sequencing technology, as well as the molecular mechanism underlying its occurrence, development, and potential use as a target for the treatment of human diseases. Furthermore, our review highlights other newly discovered chemical modifications of RNA that are associated with human disease, as well as their underlying molecular mechanisms. Thus, significant advancements have been made in qualitative/quantitative m6A detection and high-throughput sequencing, and research linking this RNA modification to disease. Efforts toward simplified and more accessible chemical/biological technologies that contribute to precision medicine are ongoing, to benefit society and patients alike.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0044-1780506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0044-1780506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,已在不同的 RNA 物种中发现了 150 多种化学修饰,这些修饰使生物体内 RNA 的结构和功能多样化。在 RNA 的腺苷 N 6 位点上发现的 N 6-甲基腺苷(m6A)修饰已被证实是细胞中 mRNA 的最主要修饰。此外,哺乳动物和其他真核细胞 mRNA 中的 m6A 修饰是高度保守的,而且必须编码。越来越多的证据表明,m6A修饰在基因表达调控和细胞命运决定中起着关键作用。在此,我们总结了最新的 m6A 测序技术及其发生、发展的分子机制,以及作为人类疾病治疗靶点的潜在用途。此外,我们的综述还重点介绍了其他新发现的与人类疾病相关的 RNA 化学修饰及其潜在的分子机制。因此,在定性/定量 m6A 检测和高通量测序以及将这种 RNA 修饰与疾病相关的研究方面取得了重大进展。目前正在努力简化化学/生物技术,使其更易于获取,从而促进精准医疗,造福社会和患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequencing, Physiological Regulation, and Representative Disease Research Progress of RNA m6A Modification
To date, more than 150 chemical modifications have been disclosed in different RNA species, which are employed to diversify the structure and function of RNA in living organisms. The N 6-methyladenosine (m6A) modification, which is found in the adenosine N 6 site of RNA, has been demonstrated to be the most heavy modification in the mRNA in cells. Moreover, the m6A modification in mRNAs of mammalian and other eukaryotic cells is highly conserved and mandatorily encoded. Increasing evidence indicates that the m6A modification plays a pivotal role in gene-expression regulation and cell-fate decisions. Here, we summarize the most recent m6A-sequencing technology, as well as the molecular mechanism underlying its occurrence, development, and potential use as a target for the treatment of human diseases. Furthermore, our review highlights other newly discovered chemical modifications of RNA that are associated with human disease, as well as their underlying molecular mechanisms. Thus, significant advancements have been made in qualitative/quantitative m6A detection and high-throughput sequencing, and research linking this RNA modification to disease. Efforts toward simplified and more accessible chemical/biological technologies that contribute to precision medicine are ongoing, to benefit society and patients alike.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
15 weeks
期刊最新文献
Recent Advances in Mitochondrial Pyruvate Carrier Inhibitors Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library Research Strategies for Precise Manipulation of Micro/Nanoparticle Drug Delivery Systems Using Microfluidic Technology: A Review Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy 3D Printing Pharmaceuticals: Current Status and Future Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1