中国大陆不同省份利用风能和太阳能生产绿色氢气的平准化成本和潜力

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Journal of Renewable and Sustainable Energy Pub Date : 2024-03-01 DOI:10.1063/5.0183511
Jinping Man, Tieju Ma, Yadong Yu, Hongtao Ren
{"title":"中国大陆不同省份利用风能和太阳能生产绿色氢气的平准化成本和潜力","authors":"Jinping Man, Tieju Ma, Yadong Yu, Hongtao Ren","doi":"10.1063/5.0183511","DOIUrl":null,"url":null,"abstract":"Green hydrogen produced from renewable sources such as wind and photovoltaic (PV) power is expected to be pivotal in China's carbon neutrality target by 2060. This study assessed the potential production, levelized costs of hydrogen (LCOH), and the cost structure in diverse mainland Chinese provinces from 2020 to 2060. It considered various combinations of electrolysis technologies, specifically alkaline electrolysis (AE) and proton exchange membrane (PEM), in conjunction with green electricity sources. The analysis considers the technological learning effects of wind power, PV power, AE, and PEM. This study's primary conclusions and policy recommendations are as follows: (1) PV power would be the predominant energy for green hydrogen production in nearly all of mainland China, providing a potential 2.25–28 642.19 kt/yr hydrogen production in different provinces. (2) AE exhibits cost (with LCOH around 3.18–8.74 USD/kg) competitiveness than PEM (with LCOH around 3.33–10.24 USD/kg) for hydrogen production. Thus, policymakers are advised to focus on the PV power combined with the AE pathway for large-scale hydrogen production. PEM is suggested to be mainly used in cases with high power fluctuations and end devices. (3) The provinces (especially Inner Mongolia, Xinjiang, and Gansu Province) in the Northwest of China show the greatest potential (about 74.35%) and have the lowest LCOH (with around 3.18–4.78 USD/kg). However, these provinces are quite distant from existing energy demand hubs. Thus, decision-makers are advised to focus on developing long-distance transmission/transportation infrastructure for either green electricity or green hydrogen.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levelized costs and potential production of green hydrogen with wind and solar power in different provinces of mainland China\",\"authors\":\"Jinping Man, Tieju Ma, Yadong Yu, Hongtao Ren\",\"doi\":\"10.1063/5.0183511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green hydrogen produced from renewable sources such as wind and photovoltaic (PV) power is expected to be pivotal in China's carbon neutrality target by 2060. This study assessed the potential production, levelized costs of hydrogen (LCOH), and the cost structure in diverse mainland Chinese provinces from 2020 to 2060. It considered various combinations of electrolysis technologies, specifically alkaline electrolysis (AE) and proton exchange membrane (PEM), in conjunction with green electricity sources. The analysis considers the technological learning effects of wind power, PV power, AE, and PEM. This study's primary conclusions and policy recommendations are as follows: (1) PV power would be the predominant energy for green hydrogen production in nearly all of mainland China, providing a potential 2.25–28 642.19 kt/yr hydrogen production in different provinces. (2) AE exhibits cost (with LCOH around 3.18–8.74 USD/kg) competitiveness than PEM (with LCOH around 3.33–10.24 USD/kg) for hydrogen production. Thus, policymakers are advised to focus on the PV power combined with the AE pathway for large-scale hydrogen production. PEM is suggested to be mainly used in cases with high power fluctuations and end devices. (3) The provinces (especially Inner Mongolia, Xinjiang, and Gansu Province) in the Northwest of China show the greatest potential (about 74.35%) and have the lowest LCOH (with around 3.18–4.78 USD/kg). However, these provinces are quite distant from existing energy demand hubs. Thus, decision-makers are advised to focus on developing long-distance transmission/transportation infrastructure for either green electricity or green hydrogen.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0183511\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0183511","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

预计到 2060 年,利用风能和光伏发电等可再生能源生产的绿色氢气将成为中国实现碳中和目标的关键。本研究评估了 2020 年至 2060 年中国大陆不同省份的潜在氢气产量、氢气平准化成本(LCOH)和成本结构。研究考虑了各种电解技术组合,特别是碱性电解(AE)和质子交换膜(PEM),以及绿色电力资源。分析考虑了风力发电、光伏发电、碱性电解和质子交换膜的技术学习效应。本研究的主要结论和政策建议如下:(1) 在中国大陆几乎所有地区,光伏发电将成为绿色制氢的主要能源,在不同省份的潜在制氢量为 2.25-28 642.19 kt/年。(2) 与 PEM(LCOH 约为 3.33-10.24 美元/公斤)相比,AE 的制氢成本(LCOH 约为 3.18-8.74 美元/公斤)更具竞争力。因此,建议政策制定者重点关注光伏发电结合 AE 的大规模制氢途径。建议 PEM 主要用于功率波动较大的情况和终端设备。(3) 中国西北部省份(尤其是内蒙古、新疆和甘肃省)显示出最大的潜力(约 74.35%)和最低的 LCOH(约 3.18-4.78 美元/千克)。然而,这些省份与现有的能源需求中心相距甚远。因此,建议决策者重点发展绿色电力或绿色氢气的远距离传输/运输基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Levelized costs and potential production of green hydrogen with wind and solar power in different provinces of mainland China
Green hydrogen produced from renewable sources such as wind and photovoltaic (PV) power is expected to be pivotal in China's carbon neutrality target by 2060. This study assessed the potential production, levelized costs of hydrogen (LCOH), and the cost structure in diverse mainland Chinese provinces from 2020 to 2060. It considered various combinations of electrolysis technologies, specifically alkaline electrolysis (AE) and proton exchange membrane (PEM), in conjunction with green electricity sources. The analysis considers the technological learning effects of wind power, PV power, AE, and PEM. This study's primary conclusions and policy recommendations are as follows: (1) PV power would be the predominant energy for green hydrogen production in nearly all of mainland China, providing a potential 2.25–28 642.19 kt/yr hydrogen production in different provinces. (2) AE exhibits cost (with LCOH around 3.18–8.74 USD/kg) competitiveness than PEM (with LCOH around 3.33–10.24 USD/kg) for hydrogen production. Thus, policymakers are advised to focus on the PV power combined with the AE pathway for large-scale hydrogen production. PEM is suggested to be mainly used in cases with high power fluctuations and end devices. (3) The provinces (especially Inner Mongolia, Xinjiang, and Gansu Province) in the Northwest of China show the greatest potential (about 74.35%) and have the lowest LCOH (with around 3.18–4.78 USD/kg). However, these provinces are quite distant from existing energy demand hubs. Thus, decision-makers are advised to focus on developing long-distance transmission/transportation infrastructure for either green electricity or green hydrogen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
期刊最新文献
Environmental and performance impacts of 2-ethylhexyl nitrate and ethanol in diesel blends: A comprehensive study Assessing rural energy poverty and early warning based on long-run evolution for clean energy transition in China Impact of photovoltaic power generation on poverty alleviation in Jiangsu, China Multi-site solar irradiance prediction based on hybrid spatiotemporal graph neural network Enhancing biomethane yield from food waste through surfactant-assisted mechanical pretreatment: An optimization approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1