{"title":"基于知识提炼的深度学习框架,用于空间域裁剪图像的检测","authors":"Israr Hussain , Shunquan Tan , Jiwu Huang","doi":"10.1016/j.image.2024.117117","DOIUrl":null,"url":null,"abstract":"<div><p>Cropping an image is a common image editing technique that aims to find viewpoints with suitable image composition. It is also a frequently used post-processing technique to reduce the evidence of tampering in an image. Detecting cropped images poses a significant challenge in the field of digital image forensics, as the distortions introduced by image cropping are often imperceptible to the human eye. Although deep neural networks achieve state-of-the-art performance, due to their ability to encode large-scale data and handle billions of model parameters. However, due to their high computational complexity and substantial storage requirements, it is difficult to deploy these large deep learning models on resource-constrained devices such as mobile phones and embedded systems. To address this issue, we propose a lightweight deep learning framework for cropping detection in spatial domain, based on knowledge distillation. Initially, we constructed four datasets containing a total of 60,000 images cropped using various tools. We then used Efficient-Net-B0, pre-trained on ImageNet with significant surgical adjustments, as the teacher model, which makes it more robust and faster to converge in this downstream task. The model was trained on 20,000 cropped and uncropped images from our own dataset, and we then applied its knowledge to a more compact model called the student model. Finally, we selected the best-performing lightweight model as the final prediction model, with a testing accuracy of 98.44% on the test dataset, which outperforms other methods. Extensive experiments demonstrate that our proposed model, distilled from Efficient-Net-B0, achieves state-of-the-art performance in terms of detection accuracy, training parameters, and FLOPs, outperforming existing methods in detecting cropped images.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"124 ","pages":"Article 117117"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A knowledge distillation based deep learning framework for cropped images detection in spatial domain\",\"authors\":\"Israr Hussain , Shunquan Tan , Jiwu Huang\",\"doi\":\"10.1016/j.image.2024.117117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cropping an image is a common image editing technique that aims to find viewpoints with suitable image composition. It is also a frequently used post-processing technique to reduce the evidence of tampering in an image. Detecting cropped images poses a significant challenge in the field of digital image forensics, as the distortions introduced by image cropping are often imperceptible to the human eye. Although deep neural networks achieve state-of-the-art performance, due to their ability to encode large-scale data and handle billions of model parameters. However, due to their high computational complexity and substantial storage requirements, it is difficult to deploy these large deep learning models on resource-constrained devices such as mobile phones and embedded systems. To address this issue, we propose a lightweight deep learning framework for cropping detection in spatial domain, based on knowledge distillation. Initially, we constructed four datasets containing a total of 60,000 images cropped using various tools. We then used Efficient-Net-B0, pre-trained on ImageNet with significant surgical adjustments, as the teacher model, which makes it more robust and faster to converge in this downstream task. The model was trained on 20,000 cropped and uncropped images from our own dataset, and we then applied its knowledge to a more compact model called the student model. Finally, we selected the best-performing lightweight model as the final prediction model, with a testing accuracy of 98.44% on the test dataset, which outperforms other methods. Extensive experiments demonstrate that our proposed model, distilled from Efficient-Net-B0, achieves state-of-the-art performance in terms of detection accuracy, training parameters, and FLOPs, outperforming existing methods in detecting cropped images.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"124 \",\"pages\":\"Article 117117\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000183\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000183","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A knowledge distillation based deep learning framework for cropped images detection in spatial domain
Cropping an image is a common image editing technique that aims to find viewpoints with suitable image composition. It is also a frequently used post-processing technique to reduce the evidence of tampering in an image. Detecting cropped images poses a significant challenge in the field of digital image forensics, as the distortions introduced by image cropping are often imperceptible to the human eye. Although deep neural networks achieve state-of-the-art performance, due to their ability to encode large-scale data and handle billions of model parameters. However, due to their high computational complexity and substantial storage requirements, it is difficult to deploy these large deep learning models on resource-constrained devices such as mobile phones and embedded systems. To address this issue, we propose a lightweight deep learning framework for cropping detection in spatial domain, based on knowledge distillation. Initially, we constructed four datasets containing a total of 60,000 images cropped using various tools. We then used Efficient-Net-B0, pre-trained on ImageNet with significant surgical adjustments, as the teacher model, which makes it more robust and faster to converge in this downstream task. The model was trained on 20,000 cropped and uncropped images from our own dataset, and we then applied its knowledge to a more compact model called the student model. Finally, we selected the best-performing lightweight model as the final prediction model, with a testing accuracy of 98.44% on the test dataset, which outperforms other methods. Extensive experiments demonstrate that our proposed model, distilled from Efficient-Net-B0, achieves state-of-the-art performance in terms of detection accuracy, training parameters, and FLOPs, outperforming existing methods in detecting cropped images.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.