Daniel Veras Ribeiro, Adriana dos Santos Silva, C.M.R. Dias
{"title":"功能分级混凝土:通过孔隙率分级提高碳化条件下的耐久性","authors":"Daniel Veras Ribeiro, Adriana dos Santos Silva, C.M.R. Dias","doi":"10.1590/s1678-86212024000100719","DOIUrl":null,"url":null,"abstract":"Abstract The present paper evaluated the potential application of the functionally graded material (FGM) concept to develop more durable concrete to carbonation, one of the main degradation mechanisms of reinforced concrete structures. Accelerated carbonation tests with controlled temperature (27 ( 2°C), CO2 concentration (3 ( 0.5%) and humidity (65 ( 5%) were carried out in homogeneous concretes and with functional gradation in which the porosity of the material was varied across the slices. For the manufacture of graded concrete specimens, concretes with water/cement ratios equal to 0.35, 0.45, and 0.55 were produced, with lower porosity (w/c = 0.35) close to the surface of the specimen. The advance of the carbonation front was evaluated after 8, 9, 10, 14, and 24 weeks of accelerated exposure, using the chemical indicator phenolphthalein. The results show that the functionally graded concrete had a carbonation coefficient (K) slightly higher than that of the concrete with a w/c ratio equal to 0.35 (1.71 and 1.54 mm.week-0.5, respectively) and much lower than concrete with water-cement ratio equal to 0.45 (2.31 mm.week-0.5) and 0.55 (3.78 mm.week-0.5). This demonstrates that functional grading can be an efficient method to increase the durability of concrete elements subject to carbonation.","PeriodicalId":490795,"journal":{"name":"Ambiente Construído","volume":"17 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionally graded concrete: porosity gradation to enhance durability under carbonation\",\"authors\":\"Daniel Veras Ribeiro, Adriana dos Santos Silva, C.M.R. Dias\",\"doi\":\"10.1590/s1678-86212024000100719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present paper evaluated the potential application of the functionally graded material (FGM) concept to develop more durable concrete to carbonation, one of the main degradation mechanisms of reinforced concrete structures. Accelerated carbonation tests with controlled temperature (27 ( 2°C), CO2 concentration (3 ( 0.5%) and humidity (65 ( 5%) were carried out in homogeneous concretes and with functional gradation in which the porosity of the material was varied across the slices. For the manufacture of graded concrete specimens, concretes with water/cement ratios equal to 0.35, 0.45, and 0.55 were produced, with lower porosity (w/c = 0.35) close to the surface of the specimen. The advance of the carbonation front was evaluated after 8, 9, 10, 14, and 24 weeks of accelerated exposure, using the chemical indicator phenolphthalein. The results show that the functionally graded concrete had a carbonation coefficient (K) slightly higher than that of the concrete with a w/c ratio equal to 0.35 (1.71 and 1.54 mm.week-0.5, respectively) and much lower than concrete with water-cement ratio equal to 0.45 (2.31 mm.week-0.5) and 0.55 (3.78 mm.week-0.5). This demonstrates that functional grading can be an efficient method to increase the durability of concrete elements subject to carbonation.\",\"PeriodicalId\":490795,\"journal\":{\"name\":\"Ambiente Construído\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ambiente Construído\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1590/s1678-86212024000100719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ambiente Construído","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1590/s1678-86212024000100719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functionally graded concrete: porosity gradation to enhance durability under carbonation
Abstract The present paper evaluated the potential application of the functionally graded material (FGM) concept to develop more durable concrete to carbonation, one of the main degradation mechanisms of reinforced concrete structures. Accelerated carbonation tests with controlled temperature (27 ( 2°C), CO2 concentration (3 ( 0.5%) and humidity (65 ( 5%) were carried out in homogeneous concretes and with functional gradation in which the porosity of the material was varied across the slices. For the manufacture of graded concrete specimens, concretes with water/cement ratios equal to 0.35, 0.45, and 0.55 were produced, with lower porosity (w/c = 0.35) close to the surface of the specimen. The advance of the carbonation front was evaluated after 8, 9, 10, 14, and 24 weeks of accelerated exposure, using the chemical indicator phenolphthalein. The results show that the functionally graded concrete had a carbonation coefficient (K) slightly higher than that of the concrete with a w/c ratio equal to 0.35 (1.71 and 1.54 mm.week-0.5, respectively) and much lower than concrete with water-cement ratio equal to 0.45 (2.31 mm.week-0.5) and 0.55 (3.78 mm.week-0.5). This demonstrates that functional grading can be an efficient method to increase the durability of concrete elements subject to carbonation.