{"title":"利用不可行路径切割,在分支切割框架内精确解决具有现实充电功能的电动汽车路由问题","authors":"Arne Schulz","doi":"10.1016/j.ejtl.2024.100131","DOIUrl":null,"url":null,"abstract":"<div><p>The paper investigates the Electric Vehicle Routing Problem with a non-linear concave and strictly monotonic increasing charging function. In the literature, the non-linear charging function is typically approximated by a piecewise linear charging function which does not overestimate the real charging function in any point. As the piecewise linear charging function underestimates the real state-of-charge in some points, such an approximation excludes feasible solutions from the solution space. To overcome this drawback we introduce a new method to determine a piecewise linear charging function overestimating the real charging function in a way that the area between both functions is minimized as well as an adaptation of a known linearization to include the piecewise linear charging function in a branch-and-cut approach. Thereby, we include infeasible solutions in the solution space. To declare them infeasible again we check every integer solution obtained in the branch-and-cut procedure and add an infeasible path cut if the solution is infeasible for the real charging function such that the procedure terminates with an optimal solution for the real charging function. Our approach is evaluated in a computational study in which instances with up to 100 customers were solved to optimality. Moreover, we evaluate the trade-off between a more complex model formulation due to more binary variables if the number of supporting points for the piecewise linear approximation is increased and the higher approximation error if fewer supporting points are used.</p></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":"13 ","pages":"Article 100131"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192437624000062/pdfft?md5=cf8749400f8456155ab286abfd962725&pid=1-s2.0-S2192437624000062-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using infeasible path cuts to solve Electric Vehicle Routing Problems with realistic charging functions exactly within a branch-and-cut framework\",\"authors\":\"Arne Schulz\",\"doi\":\"10.1016/j.ejtl.2024.100131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper investigates the Electric Vehicle Routing Problem with a non-linear concave and strictly monotonic increasing charging function. In the literature, the non-linear charging function is typically approximated by a piecewise linear charging function which does not overestimate the real charging function in any point. As the piecewise linear charging function underestimates the real state-of-charge in some points, such an approximation excludes feasible solutions from the solution space. To overcome this drawback we introduce a new method to determine a piecewise linear charging function overestimating the real charging function in a way that the area between both functions is minimized as well as an adaptation of a known linearization to include the piecewise linear charging function in a branch-and-cut approach. Thereby, we include infeasible solutions in the solution space. To declare them infeasible again we check every integer solution obtained in the branch-and-cut procedure and add an infeasible path cut if the solution is infeasible for the real charging function such that the procedure terminates with an optimal solution for the real charging function. Our approach is evaluated in a computational study in which instances with up to 100 customers were solved to optimality. Moreover, we evaluate the trade-off between a more complex model formulation due to more binary variables if the number of supporting points for the piecewise linear approximation is increased and the higher approximation error if fewer supporting points are used.</p></div>\",\"PeriodicalId\":45871,\"journal\":{\"name\":\"EURO Journal on Transportation and Logistics\",\"volume\":\"13 \",\"pages\":\"Article 100131\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192437624000062/pdfft?md5=cf8749400f8456155ab286abfd962725&pid=1-s2.0-S2192437624000062-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Transportation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192437624000062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192437624000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Using infeasible path cuts to solve Electric Vehicle Routing Problems with realistic charging functions exactly within a branch-and-cut framework
The paper investigates the Electric Vehicle Routing Problem with a non-linear concave and strictly monotonic increasing charging function. In the literature, the non-linear charging function is typically approximated by a piecewise linear charging function which does not overestimate the real charging function in any point. As the piecewise linear charging function underestimates the real state-of-charge in some points, such an approximation excludes feasible solutions from the solution space. To overcome this drawback we introduce a new method to determine a piecewise linear charging function overestimating the real charging function in a way that the area between both functions is minimized as well as an adaptation of a known linearization to include the piecewise linear charging function in a branch-and-cut approach. Thereby, we include infeasible solutions in the solution space. To declare them infeasible again we check every integer solution obtained in the branch-and-cut procedure and add an infeasible path cut if the solution is infeasible for the real charging function such that the procedure terminates with an optimal solution for the real charging function. Our approach is evaluated in a computational study in which instances with up to 100 customers were solved to optimality. Moreover, we evaluate the trade-off between a more complex model formulation due to more binary variables if the number of supporting points for the piecewise linear approximation is increased and the higher approximation error if fewer supporting points are used.
期刊介绍:
The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.