{"title":"基于变异成分的中介分析框架可消除遗传混杂效应。","authors":"Zihan Dong, Hongyu Zhao, Andrew T. DeWan","doi":"10.1038/s10038-024-01232-x","DOIUrl":null,"url":null,"abstract":"Identification of pleiotropy at the single nucleotide polymorphism (SNP) level provides valuable insights into shared genetic signals among phenotypes. One approach to study these signals is through mediation analysis, which dissects the total effect of a SNP on the outcome into a direct effect and an indirect effect through a mediator. However, estimated effects from mediation analysis can be confounded by the genetic correlation between phenotypes, leading to inaccurate results. To address this confounding effect in the context of genetic mediation analysis, we propose a restricted-maximum-likelihood (REML)-based mediation analysis framework called REML-mediation, which can be applied to either individual-level or summary statistics data. Simulations demonstrated that REML-mediation provides unbiased estimates of the true cross-trait causal effect, assuming certain assumptions, albeit with a slightly inflated standard error compared to traditional linear regression. To validate the effectiveness of REML-mediation, we applied it to UK Biobank data and analyzed several mediator-outcome trait pairs along with their corresponding sets of pleiotropic SNPs. REML-mediation successfully identified and corrected for genetic confounding effects in these trait pairs, with correction magnitudes ranging from 7% to 39%. These findings highlight the presence of genetic confounding effects in cross-trait epidemiological studies and underscore the importance of accounting for them in data analysis.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 7","pages":"301-309"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mediation analysis framework based on variance component to remove genetic confounding effect\",\"authors\":\"Zihan Dong, Hongyu Zhao, Andrew T. DeWan\",\"doi\":\"10.1038/s10038-024-01232-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of pleiotropy at the single nucleotide polymorphism (SNP) level provides valuable insights into shared genetic signals among phenotypes. One approach to study these signals is through mediation analysis, which dissects the total effect of a SNP on the outcome into a direct effect and an indirect effect through a mediator. However, estimated effects from mediation analysis can be confounded by the genetic correlation between phenotypes, leading to inaccurate results. To address this confounding effect in the context of genetic mediation analysis, we propose a restricted-maximum-likelihood (REML)-based mediation analysis framework called REML-mediation, which can be applied to either individual-level or summary statistics data. Simulations demonstrated that REML-mediation provides unbiased estimates of the true cross-trait causal effect, assuming certain assumptions, albeit with a slightly inflated standard error compared to traditional linear regression. To validate the effectiveness of REML-mediation, we applied it to UK Biobank data and analyzed several mediator-outcome trait pairs along with their corresponding sets of pleiotropic SNPs. REML-mediation successfully identified and corrected for genetic confounding effects in these trait pairs, with correction magnitudes ranging from 7% to 39%. These findings highlight the presence of genetic confounding effects in cross-trait epidemiological studies and underscore the importance of accounting for them in data analysis.\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\"69 7\",\"pages\":\"301-309\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s10038-024-01232-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-024-01232-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A mediation analysis framework based on variance component to remove genetic confounding effect
Identification of pleiotropy at the single nucleotide polymorphism (SNP) level provides valuable insights into shared genetic signals among phenotypes. One approach to study these signals is through mediation analysis, which dissects the total effect of a SNP on the outcome into a direct effect and an indirect effect through a mediator. However, estimated effects from mediation analysis can be confounded by the genetic correlation between phenotypes, leading to inaccurate results. To address this confounding effect in the context of genetic mediation analysis, we propose a restricted-maximum-likelihood (REML)-based mediation analysis framework called REML-mediation, which can be applied to either individual-level or summary statistics data. Simulations demonstrated that REML-mediation provides unbiased estimates of the true cross-trait causal effect, assuming certain assumptions, albeit with a slightly inflated standard error compared to traditional linear regression. To validate the effectiveness of REML-mediation, we applied it to UK Biobank data and analyzed several mediator-outcome trait pairs along with their corresponding sets of pleiotropic SNPs. REML-mediation successfully identified and corrected for genetic confounding effects in these trait pairs, with correction magnitudes ranging from 7% to 39%. These findings highlight the presence of genetic confounding effects in cross-trait epidemiological studies and underscore the importance of accounting for them in data analysis.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.