{"title":"瞬时反馈和稳健的信号梯度。","authors":"Aghavni Simonyan, Frederic Y M Wan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Robust development of biological organisms in the presence of genetic and epi-genetic perturbations is important for time spans short relative to evolutionary time. Gradients of receptor bound signaling morphogens are responsible for patterning formation and development. A variety of inhibitors for reducing ectopic signaling activities are known to exist and their specific role in down-regulating the undesirable ectopic activities reasonably well understood. However, how a developing organism manages to adjust inhibition/stimulation in response to genetic and/or environmental changes remains to be uncovered. The need to adjust for ectopic signaling activities requires the presence of one or more feedback mechanisms to stimulate the needed adjustment. As the ultimate effect of many inhibitors (including those of the nonreceptor type) is to reduce the availability of signaling morphogens for binding with signaling receptors, a negative feedback on signaling morphogen synthesis rate based on a root-mean-square measure of the spatial distribution of signaling concentration offers a simple approach to robusness and has been demonstrated to be effective in a proof-of-concept implementation. In this paper, we complement the previous investigation of feedback in steady state by examining the effect of one or more feedback adjustments during the transient phase of the biological development.</p>","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"13 2","pages":"179-204"},"PeriodicalIF":1.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102427/pdf/","citationCount":"0","resultStr":"{\"title\":\"TRANSIENT FEEDBACK AND ROBUST SIGNALING GRADIENTS.\",\"authors\":\"Aghavni Simonyan, Frederic Y M Wan\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robust development of biological organisms in the presence of genetic and epi-genetic perturbations is important for time spans short relative to evolutionary time. Gradients of receptor bound signaling morphogens are responsible for patterning formation and development. A variety of inhibitors for reducing ectopic signaling activities are known to exist and their specific role in down-regulating the undesirable ectopic activities reasonably well understood. However, how a developing organism manages to adjust inhibition/stimulation in response to genetic and/or environmental changes remains to be uncovered. The need to adjust for ectopic signaling activities requires the presence of one or more feedback mechanisms to stimulate the needed adjustment. As the ultimate effect of many inhibitors (including those of the nonreceptor type) is to reduce the availability of signaling morphogens for binding with signaling receptors, a negative feedback on signaling morphogen synthesis rate based on a root-mean-square measure of the spatial distribution of signaling concentration offers a simple approach to robusness and has been demonstrated to be effective in a proof-of-concept implementation. In this paper, we complement the previous investigation of feedback in steady state by examining the effect of one or more feedback adjustments during the transient phase of the biological development.</p>\",\"PeriodicalId\":50301,\"journal\":{\"name\":\"International Journal of Numerical Analysis and Modeling\",\"volume\":\"13 2\",\"pages\":\"179-204\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102427/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Analysis and Modeling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"100","ListUrlMain":"","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
TRANSIENT FEEDBACK AND ROBUST SIGNALING GRADIENTS.
Robust development of biological organisms in the presence of genetic and epi-genetic perturbations is important for time spans short relative to evolutionary time. Gradients of receptor bound signaling morphogens are responsible for patterning formation and development. A variety of inhibitors for reducing ectopic signaling activities are known to exist and their specific role in down-regulating the undesirable ectopic activities reasonably well understood. However, how a developing organism manages to adjust inhibition/stimulation in response to genetic and/or environmental changes remains to be uncovered. The need to adjust for ectopic signaling activities requires the presence of one or more feedback mechanisms to stimulate the needed adjustment. As the ultimate effect of many inhibitors (including those of the nonreceptor type) is to reduce the availability of signaling morphogens for binding with signaling receptors, a negative feedback on signaling morphogen synthesis rate based on a root-mean-square measure of the spatial distribution of signaling concentration offers a simple approach to robusness and has been demonstrated to be effective in a proof-of-concept implementation. In this paper, we complement the previous investigation of feedback in steady state by examining the effect of one or more feedback adjustments during the transient phase of the biological development.
期刊介绍:
The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.