{"title":"不同的机构组合对行走和抬腿过程中支架和下肢之间滑动的影响。","authors":"Yuzhou Yan, Ruitao Gong, Mengzhao Cao, Bing Han, Hui Li, Geng Liu","doi":"10.1177/09544119241241440","DOIUrl":null,"url":null,"abstract":"<p><p>Knee braces are commonly used to support the knee joint and improve function. However, brace sliding caused by the misalignment between brace and knee during motion is a common problem, which reduces the therapeutic effect and leads to brace abandonment. To investigate the effect of mechanism combinations on sliding, an experimental brace was designed to isolate the mechanism as the sole variable. Ten healthy participants were recruited, each of whom worn four combinations of lateral/medial mechanisms: lateral and medial single-axis (SA), lateral super gear (SG) and medial non-circular gear (NCG), lateral four-bar linkage (FL) and medial SG, and lateral FL and medial NCG. The knee flexion angle was collected using inertial measurement units, and brace sliding was measured by 3D motion capture system. All combinations had significant changes in peak sliding of thigh and shank compared to the SA combination (<i>p</i> < 0.05), but lateral FL and medial NCG combination had the lowest peak and final sliding during walking and leg-raising, with significant reductions of 40.7 and 85.3% in peak sliding of thigh, and significant reductions of 56.3 and 72.0% in peak sliding of shank, respectively (<i>p</i> < 0.05). Moreover, the mechanism combination did not significantly impact the knee range of motion (<i>p</i> > 0.05). The mechanism combination that fit the instantaneous center of rotation of lateral/medial condyle of knee joint demonstrates a significant reduction in brace sliding. Additionally, the peak sliding during motion is significantly higher than the final sliding.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"500-507"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of different mechanism combinations on sliding between brace and lower limb during walking and leg-raising.\",\"authors\":\"Yuzhou Yan, Ruitao Gong, Mengzhao Cao, Bing Han, Hui Li, Geng Liu\",\"doi\":\"10.1177/09544119241241440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knee braces are commonly used to support the knee joint and improve function. However, brace sliding caused by the misalignment between brace and knee during motion is a common problem, which reduces the therapeutic effect and leads to brace abandonment. To investigate the effect of mechanism combinations on sliding, an experimental brace was designed to isolate the mechanism as the sole variable. Ten healthy participants were recruited, each of whom worn four combinations of lateral/medial mechanisms: lateral and medial single-axis (SA), lateral super gear (SG) and medial non-circular gear (NCG), lateral four-bar linkage (FL) and medial SG, and lateral FL and medial NCG. The knee flexion angle was collected using inertial measurement units, and brace sliding was measured by 3D motion capture system. All combinations had significant changes in peak sliding of thigh and shank compared to the SA combination (<i>p</i> < 0.05), but lateral FL and medial NCG combination had the lowest peak and final sliding during walking and leg-raising, with significant reductions of 40.7 and 85.3% in peak sliding of thigh, and significant reductions of 56.3 and 72.0% in peak sliding of shank, respectively (<i>p</i> < 0.05). Moreover, the mechanism combination did not significantly impact the knee range of motion (<i>p</i> > 0.05). The mechanism combination that fit the instantaneous center of rotation of lateral/medial condyle of knee joint demonstrates a significant reduction in brace sliding. Additionally, the peak sliding during motion is significantly higher than the final sliding.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"500-507\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119241241440\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241241440","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
膝关节支架通常用于支撑膝关节并改善其功能。然而,在运动过程中,支具与膝关节之间的错位导致的支具滑动是一个常见问题,这会降低治疗效果并导致支具被放弃。为了研究机构组合对滑动的影响,我们设计了一种实验性支具,将机构隔离为唯一变量。研究人员招募了 10 名健康参与者,他们分别佩戴了四种外侧/内侧机构组合:外侧和内侧单轴(SA)、外侧超级齿轮(SG)和内侧非圆齿轮(NCG)、外侧四杆连杆(FL)和内侧 SG 以及外侧 FL 和内侧 NCG。使用惯性测量装置收集膝关节屈曲角度,并使用三维运动捕捉系统测量支撑架的滑动。与 SA 组合相比,所有组合的大腿和小腿滑动峰值都有明显变化(p p p > 0.05)。与膝关节外侧/内侧髁的瞬时旋转中心相匹配的机构组合明显减少了支撑滑动。此外,运动过程中的滑动峰值明显高于最终滑动峰值。
The effect of different mechanism combinations on sliding between brace and lower limb during walking and leg-raising.
Knee braces are commonly used to support the knee joint and improve function. However, brace sliding caused by the misalignment between brace and knee during motion is a common problem, which reduces the therapeutic effect and leads to brace abandonment. To investigate the effect of mechanism combinations on sliding, an experimental brace was designed to isolate the mechanism as the sole variable. Ten healthy participants were recruited, each of whom worn four combinations of lateral/medial mechanisms: lateral and medial single-axis (SA), lateral super gear (SG) and medial non-circular gear (NCG), lateral four-bar linkage (FL) and medial SG, and lateral FL and medial NCG. The knee flexion angle was collected using inertial measurement units, and brace sliding was measured by 3D motion capture system. All combinations had significant changes in peak sliding of thigh and shank compared to the SA combination (p < 0.05), but lateral FL and medial NCG combination had the lowest peak and final sliding during walking and leg-raising, with significant reductions of 40.7 and 85.3% in peak sliding of thigh, and significant reductions of 56.3 and 72.0% in peak sliding of shank, respectively (p < 0.05). Moreover, the mechanism combination did not significantly impact the knee range of motion (p > 0.05). The mechanism combination that fit the instantaneous center of rotation of lateral/medial condyle of knee joint demonstrates a significant reduction in brace sliding. Additionally, the peak sliding during motion is significantly higher than the final sliding.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.