Mark T. Waddingham , Hirotsugu Tsuchimochi , Takashi Sonobe , Vasco Sequeira , Md Junayed Nayeem , Mikiyasu Shirai , James T. Pearson , Takeshi Ogo
{"title":"选择性血清素再摄取抑制剂帕罗西汀能改善实验性肺动脉高压的右心室收缩功能","authors":"Mark T. Waddingham , Hirotsugu Tsuchimochi , Takashi Sonobe , Vasco Sequeira , Md Junayed Nayeem , Mikiyasu Shirai , James T. Pearson , Takeshi Ogo","doi":"10.1016/j.jmccpl.2024.100072","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation.</p></div><div><h3>Methods</h3><p>The Su5416/hypoxia (SuHx) rat model was used to induce PH. Rats were treated with paroxetine and compared to vehicle-treated and control groups. Parameters measured included RV morphology, systolic and diastolic function, myofilament protein phosphorylation, GRK2 activity, and sympathetic nervous system (SNS) markers.</p></div><div><h3>Results</h3><p>Paroxetine treatment significantly improved RV systolic function, evidenced by increased stroke volume, cardiac output, and ejection fraction, without significantly affecting RV hypertrophy, myosin heavy chain/titin isoform switching, or fibrosis. Enhanced phosphorylation of titin and myosin light chain-2 was observed, correlating positively with improved systolic function. Contrary to the hypothesis, improvements occurred independently of GRK2 inhibition or SNS modulation, suggesting an alternate mechanism, potentially involving antioxidant properties of paroxetine.</p></div><div><h3>Conclusion</h3><p>Paroxetine improves RV systolic function in PH rats, likely through mechanisms beyond GRK2 inhibition, possibly related to its antioxidant effects. This highlights the potential of paroxetine in managing RV dysfunction in PH, warranting further investigation into its detailed mechanisms of action and clinical applicability.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"8 ","pages":"Article 100072"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772976124000126/pdfft?md5=69eb8d8b649d066927e31fc6a2eb106c&pid=1-s2.0-S2772976124000126-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The selective serotonin reuptake inhibitor paroxetine improves right ventricular systolic function in experimental pulmonary hypertension\",\"authors\":\"Mark T. Waddingham , Hirotsugu Tsuchimochi , Takashi Sonobe , Vasco Sequeira , Md Junayed Nayeem , Mikiyasu Shirai , James T. Pearson , Takeshi Ogo\",\"doi\":\"10.1016/j.jmccpl.2024.100072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation.</p></div><div><h3>Methods</h3><p>The Su5416/hypoxia (SuHx) rat model was used to induce PH. Rats were treated with paroxetine and compared to vehicle-treated and control groups. Parameters measured included RV morphology, systolic and diastolic function, myofilament protein phosphorylation, GRK2 activity, and sympathetic nervous system (SNS) markers.</p></div><div><h3>Results</h3><p>Paroxetine treatment significantly improved RV systolic function, evidenced by increased stroke volume, cardiac output, and ejection fraction, without significantly affecting RV hypertrophy, myosin heavy chain/titin isoform switching, or fibrosis. Enhanced phosphorylation of titin and myosin light chain-2 was observed, correlating positively with improved systolic function. Contrary to the hypothesis, improvements occurred independently of GRK2 inhibition or SNS modulation, suggesting an alternate mechanism, potentially involving antioxidant properties of paroxetine.</p></div><div><h3>Conclusion</h3><p>Paroxetine improves RV systolic function in PH rats, likely through mechanisms beyond GRK2 inhibition, possibly related to its antioxidant effects. This highlights the potential of paroxetine in managing RV dysfunction in PH, warranting further investigation into its detailed mechanisms of action and clinical applicability.</p></div>\",\"PeriodicalId\":73835,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology plus\",\"volume\":\"8 \",\"pages\":\"Article 100072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772976124000126/pdfft?md5=69eb8d8b649d066927e31fc6a2eb106c&pid=1-s2.0-S2772976124000126-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772976124000126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772976124000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The selective serotonin reuptake inhibitor paroxetine improves right ventricular systolic function in experimental pulmonary hypertension
Background
Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation.
Methods
The Su5416/hypoxia (SuHx) rat model was used to induce PH. Rats were treated with paroxetine and compared to vehicle-treated and control groups. Parameters measured included RV morphology, systolic and diastolic function, myofilament protein phosphorylation, GRK2 activity, and sympathetic nervous system (SNS) markers.
Results
Paroxetine treatment significantly improved RV systolic function, evidenced by increased stroke volume, cardiac output, and ejection fraction, without significantly affecting RV hypertrophy, myosin heavy chain/titin isoform switching, or fibrosis. Enhanced phosphorylation of titin and myosin light chain-2 was observed, correlating positively with improved systolic function. Contrary to the hypothesis, improvements occurred independently of GRK2 inhibition or SNS modulation, suggesting an alternate mechanism, potentially involving antioxidant properties of paroxetine.
Conclusion
Paroxetine improves RV systolic function in PH rats, likely through mechanisms beyond GRK2 inhibition, possibly related to its antioxidant effects. This highlights the potential of paroxetine in managing RV dysfunction in PH, warranting further investigation into its detailed mechanisms of action and clinical applicability.