通过沉积-脱合金方法将三维分层多孔集流器用于锂金属负极

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2024-03-26 DOI:10.1016/j.elecom.2024.107702
Yunhui Liu , Haoxuan Huang , Gangyi Xiong, Shurui Li, Yalan Xing, Shichao Zhang
{"title":"通过沉积-脱合金方法将三维分层多孔集流器用于锂金属负极","authors":"Yunhui Liu ,&nbsp;Haoxuan Huang ,&nbsp;Gangyi Xiong,&nbsp;Shurui Li,&nbsp;Yalan Xing,&nbsp;Shichao Zhang","doi":"10.1016/j.elecom.2024.107702","DOIUrl":null,"url":null,"abstract":"<div><p>In order to inhibit dendritic growth and improve the cycle stability of lithium metal anodes (LMAs), a 3D Nanoporous Nickel Foam (NP-NF) collector with hierarchical porous structure is designed through a simple modification strategy of Ni Foam (NF). The strategy only involves two steps, i.e. electrodeposition of metal zinc and chemical dealloying to evolve nanoporous structure. The obtained NP-NF possesses hierarchical pores. The large pores of several hundreds of micrometers from Ni foam could facilitate fast Li<sup>+</sup> transport in dynamics. The mesopores on the surface of 100 nm to 1 μm could provide spatial confinement for Li deposition. The increased specific surface area could also reduce the local current density of electrode and consequently suppress the growth of dendrites. In addition, the in-situ formed lithophilic NiO on the 3D NP-NF surface can uniformly induce Li<sup>+</sup> deposition. Compared to the Ni foam skeleton, 3D NP-NF in LMAs presents a significantly improved Li plating/string stability with a high Coulombic efficiency of 95 % after 350 cycles with plating capacity of 1 mAh cm<sup>−2</sup> at a current density of 1 mA cm<sup>−2</sup>. 3D NP-NF@Li|Li cell shows an ultra-low overpotential of 18 mV during the 500 cycles (1000 h) at a current density of 1 mA cm<sup>−2</sup>. The 3D NP-NF@Li|LiFePO<sub>4</sub> can stably cycle for 300 times with the capacity retention of above 80 % at 1C. This work demonstrates that constructing a micro-nano 3D porous structure collector can inhibit dendritic growth and improve lifespan of LMAs.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"163 ","pages":"Article 107702"},"PeriodicalIF":4.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000456/pdfft?md5=c6abefb655bce4107d468213b447c5f0&pid=1-s2.0-S1388248124000456-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D hierarchical porous current collector via deposition-dealloying method for lithium metal anode\",\"authors\":\"Yunhui Liu ,&nbsp;Haoxuan Huang ,&nbsp;Gangyi Xiong,&nbsp;Shurui Li,&nbsp;Yalan Xing,&nbsp;Shichao Zhang\",\"doi\":\"10.1016/j.elecom.2024.107702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to inhibit dendritic growth and improve the cycle stability of lithium metal anodes (LMAs), a 3D Nanoporous Nickel Foam (NP-NF) collector with hierarchical porous structure is designed through a simple modification strategy of Ni Foam (NF). The strategy only involves two steps, i.e. electrodeposition of metal zinc and chemical dealloying to evolve nanoporous structure. The obtained NP-NF possesses hierarchical pores. The large pores of several hundreds of micrometers from Ni foam could facilitate fast Li<sup>+</sup> transport in dynamics. The mesopores on the surface of 100 nm to 1 μm could provide spatial confinement for Li deposition. The increased specific surface area could also reduce the local current density of electrode and consequently suppress the growth of dendrites. In addition, the in-situ formed lithophilic NiO on the 3D NP-NF surface can uniformly induce Li<sup>+</sup> deposition. Compared to the Ni foam skeleton, 3D NP-NF in LMAs presents a significantly improved Li plating/string stability with a high Coulombic efficiency of 95 % after 350 cycles with plating capacity of 1 mAh cm<sup>−2</sup> at a current density of 1 mA cm<sup>−2</sup>. 3D NP-NF@Li|Li cell shows an ultra-low overpotential of 18 mV during the 500 cycles (1000 h) at a current density of 1 mA cm<sup>−2</sup>. The 3D NP-NF@Li|LiFePO<sub>4</sub> can stably cycle for 300 times with the capacity retention of above 80 % at 1C. This work demonstrates that constructing a micro-nano 3D porous structure collector can inhibit dendritic growth and improve lifespan of LMAs.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"163 \",\"pages\":\"Article 107702\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000456/pdfft?md5=c6abefb655bce4107d468213b447c5f0&pid=1-s2.0-S1388248124000456-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000456\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000456","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

为了抑制树枝状生长并提高锂金属阳极(LMAs)的循环稳定性,通过对镍泡沫(NF)进行简单的改性,设计出了一种具有分层多孔结构的三维纳米多孔镍泡沫(NP-NF)集流体。该策略只涉及两个步骤,即电沉积金属锌和化学脱合金以形成纳米多孔结构。获得的 NP-NF 具有分层孔隙。镍泡沫中数百微米的大孔可促进 Li+ 在动力学中的快速传输。表面 100 纳米到 1 微米的中孔可为锂沉积提供空间限制。比表面积的增加还能降低电极的局部电流密度,从而抑制树枝状突起的生长。此外,三维 NP-NF 表面原位形成的嗜石性氧化镍能均匀地诱导 Li+ 沉积。与泡沫镍骨架相比,LMAs 中的三维 NP-NF 显著提高了锂的电镀/串联稳定性,在电流密度为 1 mA cm-2 时,电镀容量为 1 mAh cm-2 ,循环 350 次后库仑效率高达 95%。三维 NP-NF@Li|Li 电池在电流密度为 1 mA cm-2 的条件下循环 500 次(1000 小时)后,显示出 18 mV 的超低过电位。三维 NP-NF@Li|LiFePO4 电池在 1C 下可稳定循环 300 次,容量保持率超过 80%。这项工作表明,构建微纳三维多孔结构集电器可以抑制树枝状生长,提高 LMA 的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D hierarchical porous current collector via deposition-dealloying method for lithium metal anode

In order to inhibit dendritic growth and improve the cycle stability of lithium metal anodes (LMAs), a 3D Nanoporous Nickel Foam (NP-NF) collector with hierarchical porous structure is designed through a simple modification strategy of Ni Foam (NF). The strategy only involves two steps, i.e. electrodeposition of metal zinc and chemical dealloying to evolve nanoporous structure. The obtained NP-NF possesses hierarchical pores. The large pores of several hundreds of micrometers from Ni foam could facilitate fast Li+ transport in dynamics. The mesopores on the surface of 100 nm to 1 μm could provide spatial confinement for Li deposition. The increased specific surface area could also reduce the local current density of electrode and consequently suppress the growth of dendrites. In addition, the in-situ formed lithophilic NiO on the 3D NP-NF surface can uniformly induce Li+ deposition. Compared to the Ni foam skeleton, 3D NP-NF in LMAs presents a significantly improved Li plating/string stability with a high Coulombic efficiency of 95 % after 350 cycles with plating capacity of 1 mAh cm−2 at a current density of 1 mA cm−2. 3D NP-NF@Li|Li cell shows an ultra-low overpotential of 18 mV during the 500 cycles (1000 h) at a current density of 1 mA cm−2. The 3D NP-NF@Li|LiFePO4 can stably cycle for 300 times with the capacity retention of above 80 % at 1C. This work demonstrates that constructing a micro-nano 3D porous structure collector can inhibit dendritic growth and improve lifespan of LMAs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
Electrochemical detection of pesticides: A comprehensive review on voltammetric determination of malathion, 2,4-D, carbaryl, and glyphosate In-situ solvothermal synthesis of free-binder NiCo2S4/nickel foam electrode for supercapacitor application: Effects of CTAB surfactant Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1