{"title":"摩尔-彭罗斯逆和群逆的混合逆序定律的构造和特征","authors":"Yongge Tian","doi":"10.1515/gmj-2024-2016","DOIUrl":null,"url":null,"abstract":"This paper is concerned with constructions and characterizations of matrix equalities that involve mixed products of Moore–Penrose inverses and group inverses of two matrices. We first construct a mixed reverse-order law <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo></m:mo> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>B</m:mi> <m:mo></m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> <m:mo></m:mo> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0486.png\" /> <jats:tex-math>{(AB)^{{\\dagger}}=B^{\\ast}(A^{\\ast}ABB^{\\ast})^{\\#}A^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and show that this matrix equality always holds through the use of a special matrix rank equality and some matrix range operations, where <jats:italic>A</jats:italic> and <jats:italic>B</jats:italic> are two matrices of appropriate sizes, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∗</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0509.png\" /> <jats:tex-math>{(\\,\\cdot\\,)^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0510.png\" /> <jats:tex-math>{(\\,\\cdot\\,)^{{\\dagger}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0508.png\" /> <jats:tex-math>{(\\,\\cdot\\,)^{\\#}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> mean the conjugate transpose, the Moore–Penrose inverse, and the group inverse of a matrix, respectively. We then give a diverse range of variation forms of this equality, and derive necessary and sufficient conditions for them to hold. Especially, we show an interesting fact that the two reverse-order laws <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mo>†</m:mo> </m:msup> <m:mo></m:mo> <m:msup> <m:mi>A</m:mi> <m:mo>†</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0487.png\" /> <jats:tex-math>{(AB)^{{\\dagger}}=B^{{\\dagger}}A^{{\\dagger}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo></m:mo> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>B</m:mi> <m:mo></m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>B</m:mi> <m:mo></m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo></m:mo> <m:mi>A</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0501.png\" /> <jats:tex-math>{(A^{\\ast}ABB^{\\ast})^{\\#}=(BB^{\\ast})^{\\#}(A^{\\ast}A)^{\\#}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are equivalent.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructions and characterizations of mixed reverse-order laws for the Moore–Penrose inverse and group inverse\",\"authors\":\"Yongge Tian\",\"doi\":\"10.1515/gmj-2024-2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with constructions and characterizations of matrix equalities that involve mixed products of Moore–Penrose inverses and group inverses of two matrices. We first construct a mixed reverse-order law <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo></m:mo> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>B</m:mi> <m:mo></m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> <m:mo></m:mo> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0486.png\\\" /> <jats:tex-math>{(AB)^{{\\\\dagger}}=B^{\\\\ast}(A^{\\\\ast}ABB^{\\\\ast})^{\\\\#}A^{\\\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and show that this matrix equality always holds through the use of a special matrix rank equality and some matrix range operations, where <jats:italic>A</jats:italic> and <jats:italic>B</jats:italic> are two matrices of appropriate sizes, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo rspace=\\\"4.2pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mo rspace=\\\"4.2pt\\\">⋅</m:mo> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∗</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0509.png\\\" /> <jats:tex-math>{(\\\\,\\\\cdot\\\\,)^{\\\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo rspace=\\\"4.2pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mo rspace=\\\"4.2pt\\\">⋅</m:mo> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0510.png\\\" /> <jats:tex-math>{(\\\\,\\\\cdot\\\\,)^{{\\\\dagger}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo rspace=\\\"4.2pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mo rspace=\\\"4.2pt\\\">⋅</m:mo> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0508.png\\\" /> <jats:tex-math>{(\\\\,\\\\cdot\\\\,)^{\\\\#}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> mean the conjugate transpose, the Moore–Penrose inverse, and the group inverse of a matrix, respectively. We then give a diverse range of variation forms of this equality, and derive necessary and sufficient conditions for them to hold. Especially, we show an interesting fact that the two reverse-order laws <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mo>†</m:mo> </m:msup> <m:mo></m:mo> <m:msup> <m:mi>A</m:mi> <m:mo>†</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0487.png\\\" /> <jats:tex-math>{(AB)^{{\\\\dagger}}=B^{{\\\\dagger}}A^{{\\\\dagger}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo></m:mo> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>B</m:mi> <m:mo></m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>B</m:mi> <m:mo></m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo></m:mo> <m:mi>A</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0501.png\\\" /> <jats:tex-math>{(A^{\\\\ast}ABB^{\\\\ast})^{\\\\#}=(BB^{\\\\ast})^{\\\\#}(A^{\\\\ast}A)^{\\\\#}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are equivalent.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文关注涉及两个矩阵的摩尔-彭罗斯倒数和群倒数的混合乘积的矩阵等式的构造和特征。我们首先构建了一个混合逆序律 ( A B ) † = B ∗ ( A ∗ A B B ∗ ) # A ∗ {(AB)^{{\dagger}}=B^{ast}(A^{/ast}ABB^{/ast})^{\#}A^{/ast}} ,并通过证明这个矩阵相等总是成立的,来说明这个矩阵相等是正确的。 通过使用特殊的矩阵秩相等和一些矩阵范围运算,证明这个矩阵相等总是成立的,其中 A 和 B 是两个适当大小的矩阵,( ⋅ ) ∗ {(\,\cdot\,)^{\ast}} ,( ⋅ ) † {(\,\cdot\,)^{\ast}} 。 , ( ⋅ ) † {(\\cdot\,)^{{\dagger}} 和 ( ⋅ ) # {(\\cdot\,)^{\#}} 分别指矩阵的共轭转置、摩尔-彭罗斯逆和群逆。然后,我们给出了这一等式的各种变化形式,并推导出它们成立的必要条件和充分条件。特别是特别是,我们展示了一个有趣的事实,即两个反序规律( A B ) † = B † A † {(AB)^{{\dagger}}=B^{{dagger\}}A^{{\dagger}}} 和 ( A ∗ A B B∗ ) # = ( B B ∗ ) # ( A A ) # {(A^{\ast}ABB^{\ast})^{#}=(BB^{\ast})^{#}(A^{\ast}A)^{\#}} 是等价的。
Constructions and characterizations of mixed reverse-order laws for the Moore–Penrose inverse and group inverse
This paper is concerned with constructions and characterizations of matrix equalities that involve mixed products of Moore–Penrose inverses and group inverses of two matrices. We first construct a mixed reverse-order law (AB)†=B∗(A∗ABB∗)#A∗{(AB)^{{\dagger}}=B^{\ast}(A^{\ast}ABB^{\ast})^{\#}A^{\ast}}, and show that this matrix equality always holds through the use of a special matrix rank equality and some matrix range operations, where A and B are two matrices of appropriate sizes, (⋅)∗{(\,\cdot\,)^{\ast}}, (⋅)†{(\,\cdot\,)^{{\dagger}}} and (⋅)#{(\,\cdot\,)^{\#}} mean the conjugate transpose, the Moore–Penrose inverse, and the group inverse of a matrix, respectively. We then give a diverse range of variation forms of this equality, and derive necessary and sufficient conditions for them to hold. Especially, we show an interesting fact that the two reverse-order laws (AB)†=B†A†{(AB)^{{\dagger}}=B^{{\dagger}}A^{{\dagger}}} and (A∗ABB∗)#=(BB∗)#(A∗A)#{(A^{\ast}ABB^{\ast})^{\#}=(BB^{\ast})^{\#}(A^{\ast}A)^{\#}} are equivalent.